Meine Merkliste
my.chemie.de  
Login  

Astrochemie: Wie das Leben im All entstanden sein könnte

11.04.2017

© RUB, Damian Gorczany

So ahmen die Forscher Weltraumstrahlung im Labor nach: Eine Lichtquelle regt Wasserstoff an und erzeugt so sehr energiereiche Ultraviolett-Strahlung.

Kometeneinschläge stellen wir uns in der Regel als Bedrohung und nicht als Quell des Lebens vor. Aber vielleicht waren sie genau das. In Bochum suchen Forscher nach Indizien für diese Theorie.

Welche chemischen Prozesse im Weltall die Bausteine des Lebens hervorgebracht haben könnten, erforschen Chemiker an der Ruhr-Universität Bochum (RUB) im Team von Prof. Dr. Wolfram Sander. In ihren Experimenten simulieren die Wissenschaftler die Bedingungen im Weltall und vollziehen im Detail nach, wie bestimmte chemische Reaktionen vonstattengehen. Über die Ergebnisse berichten sie im Wissenschaftsmagazin Rubin der Ruhr-Universität Bochum.

Eine Theorie besagt, dass die Bausteine des Lebens nicht auf der Erde entstanden sind. Kometeneinschläge haben möglicherweise Aminosäuren, die Grundeinheiten der Proteine, auf unseren Planeten gebracht. Wie sich solche komplexen Moleküle im All gebildet haben könnten, ist eine Frage, der Sanders Team nachgeht. Die Wissenschaftler beschäftigen sich mit Vorgängen in kondensierter Phase, also in Flüssigkeiten, Festkörpern oder auf Oberflächen, die bislang wenig erforscht sind.

Ein Vorläufer der Aminosäuren

Neben Wasserstoff und Sauerstoff sind im Eiskern von Kometen üblicherweise auch Stickstoff und Kohlenstoff enthalten – alle Elemente, die es für eine Aminosäure braucht. Eine mögliche Vorläuferstufe der Aminosäuren im Weltall könnte das Molekül Hydroxyalmin sein (NH2–OH), das aus einem Stickstoff-, einem Sauerstoff- und drei Wasserstoffatome besteht. Bislang konnte es allerdings nicht im All nachgewiesen werden.

RUB-Doktorand Yetsedaw Tsegaw untersuchte im Experiment, ob die Bedingungen im Weltraum es überhaupt zulassen würden, dass sich dieses Molekül bildet. Er stellte den Zustand im Kometeneis im Labor nach, brachte in dieser Umgebung Ammoniak (NH3) und Sauerstoff (O2) zusammen und behandelte die Mischung mit hochenergetischer Strahlung, wie sie auch im Weltall vorkommt. Mit einer besonderen Form der Infrarot-Spektroskopie beobachtete er die auftretenden Reaktionen.

Verstecktes Molekül

Die Messungen führte Tsegaw als Gastwissenschaftler am „WM Keck Research Laboratory in Astrochemistry“ auf Hawaii durch, in der Arbeitsgruppe von Prof. Dr. Ralf Kaiser. An der RUB analysierte er anschließend die Daten. Das Ergebnis: In dem Experiment war tatsächlich Hydroxylamin entstanden. Es war aber nicht auf den ersten Blick sichtbar. Denn die Banden von Hydroxylamin wurden im Infrarot-Spektrum von den Banden anderer Moleküle überlagert. Erst als Tsegaw die Probe Schritt für Schritt erwärmte und sich die störenden Substanzen verflüchtigten, konnte er Hydroxylamin nachweisen.

Theoretisch könnte sich das Molekül also im Kometeneis bilden. Der Chemiker vermutet, dass man im Weltall bislang nicht mit den richtigen Techniken danach gesucht hat.

Fakten, Hintergründe, Dossiers
  • Astrochemie
  • Ruhr-Universität Bochum
  • chemische Reaktionen
Mehr über Ruhr-Universität Bochum
  • News

    Wie zwei Wassermoleküle miteinander tanzen

    Obwohl Wasser allgegenwärtig ist, ist die Wechselwirkung zwischen einzelnen Wassermolekülen bislang nicht vollständig verstanden. Ein internationales Forschungsteam hat neue Erkenntnisse zu der Interaktion von Wassermolekülen gewonnen. Die Wissenschaftler konnten erstmals alle Bewegungen zw ... mehr

    Nächster Schritt zu magnetischen organischen Molekülen

    Im Gegensatz zu metallischen Magneten könnten Magnete aus organischen Molekülen leicht, transparent, biegsam oder flüssig sein. Normalerweise sind sie allerdings instabil. Neue Moleküle mit magnetischen Eigenschaften hat ein Team des Exzellenzclusters Ruhr Explores Solvation an der Ruhr-Un ... mehr

    Wie die Natur Wasserstoff produzierende Enzyme baut

    Wie Wasserstoff produzierende Enzyme, die sogenannten Hydrogenasen, während ihrer Biosynthese aktiviert werden, hat ein Team der Ruhr-Universität Bochum und der University of Oxford herausgefunden. Sie zeigten, wie der Kofaktor - ein Teil des aktiven Zentrums und zugleich das Herzstück des ... mehr

  • q&more Artikel

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

    Mathies V. Evers

    Mathies Evers, Jahrgang 1989, studierte Chemie an der Ruhr-Universität Bochum, wo er an der Synthese atompräziser molekularer Cluster forschte. Nach seinem Masterabschluss begann er seine Doktorarbeit am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik und wird durch den ... mehr

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik promovierte im Jahr 2012 an der TU Dresden und arbeitete als Postdoktorandin am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden sowie an der Universität Oxford. Danach baute sie gefördert durch ein NRW-Rückkehrprogramm die Arbeitsgruppe für „Elektrochemie u ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.