19.09.2017 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Ein Traum von einem Schaum

Bier verzückt auch Materialwissenschaftler

ETH-Forscher sind dem Geheimnis von stabilen Schäumen auf den Grund gegangen. Ihre Erkenntnisse könnten Bierschaum und Glaces haltbarer machen. Und Beton revolutionieren.

«O'zapft is!» –  soeben haben die Münchner auf der Wiesn das Oktoberfest eröffnet. Und das Bier fliesst nun in Strömen. Der Gerstensaft erzeugt jedoch nicht nur ein kollektives Delirium, sondern verzückt wegen seines prächtigen Schaums auch Materialwissenschaftler.

Ein guter Bierschaum ist ein Zeichen für die Qualität und die Frische eines Biers. Eine typische Schaumkrone ist 1,5 Zentimeter dick und besteht aus 1,5 Millionen Bläschen. Idealerweise bleibt sie stabil, doch meist verschmelzen die Bläschen bald miteinander oder sie platzen und der Schaum fällt in sich zusammen. Dieses Verhalten ist typisch für alle Arten von Schäumen, seien dies nun Nahrungsmittel oder moderne Industriematerialien.

Einer dieser Vorgänge, der Schaum instabil macht, ist besonders schwierig zu stoppen. Ostwald-Reifung nennen Fachleute diesen Prozess, den der deutsche Chemiker und Nobelpreisträger von 1909, Wilhelm Ostwald, schon vor über 100 Jahren beschrieben hatte. Dabei werden grosse Bläschen noch grösser und kleine schrumpfen und verschwinden.

Zerfall des Schaums stoppen

Die Ostwald-Reifung verändert die Textur von Bierschaum und anderen geschäumten Lebensmitteln und Konsumartikeln auf unerwünschte Weise, und sie schwächt die Produktequalität. Schäume (und Emulsionen) zu stabilisieren, ist deshalb eine Herausforderung bei verschiedensten Anwendungen, von Pflegeprodukten bis hin zu modernen funktionalen Materialien.

Oberflächenstabilisatoren wie bestimmte Proteine im Bier können die Reifung des Schaums aber verlangsamen, indem sie die Oberflächenspannung senken. Verhindern können Stabilisatoren die Ostwald-Reifung allerdings nicht. Hat diese eingesetzt, lässt sie sich nicht mehr stoppen.

Jan Vermant, Professor für weiche Materialien der ETH Zürich, und seine Gruppe haben nun für dieses Schaumproblem eine neue wissenschaftliche Grundlage erarbeitet. Es ist den Wissenschaftlern zum ersten Mal gelungen, die Stabilisierung von Schaumbläschen quantitativ zu erfassen und allgemeingültige Prinzipien zu formulieren. «Diese Prinzipien werden der Lebensmittel- und Materialindustrie helfen, gezielt Stabilisatoren zu entwickeln, welche der Ostwald-Reifung vorbeugen oder sie gar stoppen», sagt Vermant.

Netz von Partikeln stabilisiert Blase

In ihrer Studie zeigen die ETH-Materialforscher auf, wie bestimmte Partikel als Schaumstabilisatoren wirken und kleine Bläschen vor dem Schrumpfen schützen. Zu Testzwecken verwendeten die Wissenschaftler mikrometergrosse Polymerteilchen sowie Partikel von reiskornartiger Form. Die beiden unterschiedlichen Teilchen bilden eine unregelmässige Netzstruktur an der Bläschenoberfläche.

In einer speziellen Mikrofluidik-Anordnung testeten die Forscher, ob dieses Netzwerk die Bläschen genügend stützt. Darin konnten sie einzelne Bläschen gezielt mit einer kontrollierten Menge dieser Stabilisatoren beschichten und danach in einer Mini-Druckkammer stufenweise steigenden Druckverhältnissen aussetzten. Die Wissenschaftler simulierten damit Ostwald-Reifung.

«Dadurch konnten wir genau festhalten, bei welchem Druck ein Bläschen zu schrumpfen beginnt und schliesslich kollabiert», sagt Peter Beltramo, Postdoktorand bei Vermant. Dank ihrer speziellen Versuchsanordnung konnten die Forschenden nicht nur Einzelbläschen untersuchen. Sie konnten auch die Zahl der Partikel, die ein Bläschen umgeben, variieren und dann die Anzahl der Partikel mit den mechanischen Eigenschaften des Bläschens in Bezug setzen.

Es zeigte sich, dass teilweise bedeckte Bläschen genauso stabil sein können wie solche, die vollkommen mit Partikeln bedeckt sind. Damit lässt sich die benötigte Menge eines Stabilisators genau vorhersagen. «Dank unseren Erkenntnissen lassen sich viel Material und damit Kosten einsparen», betont Beltramo. Weiter stellten die Forscher fest, dass ein beschichtetes Bläschen einem viel höheren Druck standhält als ein unbeschichtetes.

Universell gültig

Die gewonnenen Erkenntnisse seien über Schäume hinaus universell gültig für alle Materialien mit grossen Oberflächen oder Anwendungen, in denen Oberflächen eine wichtige Rolle spielten, sagt Vermant. Unter anderem gelte das Prinzip auch für die Lunge oder das Auge, das durch einen Tränenfilm geschützt sei. «Diese dünnen Filme sind sehr stabil – entwickelt von der Natur», sagt Vermant.

Die Erkenntnisse könnten auch für die Industrie nützlich sein. Wissenschaftler könnten nun nach Stabilisatoren forschen, die schaumige Lebensmittel wie Eiscrème, Brotteig oder auch Bierschaum haltbarer machten. «Wir geben der Lebensmittelindustrie Entwicklungsrichtlinien und Quantifizierungswerkzeuge in die Hand, die sie bei der Entwicklung neuer Produkte verwenden können», erklärt der ETH-Professor. Und was für Bierschaum oder Eiscrème recht ist, ist für Beton billig. Kleine stabile Bläschen in Beton machen ihn widerstandsfähiger gegenüber Zyklen von Einfrieren und Auftauen. Zudem wird er dadurch leichter.

Anlass zu dieser Forschungsarbeit gaben Nahrungsmittelschäume. Die Studie wurde mitfinanziert vom Glacéhersteller Nestlé. «Über Eiscrème und stabilen Bierschaum nachzudenken kann also zu neuen besseren Materialien führen – Prost!», freut sich Vermant.

Fakten, Hintergründe, Dossiers
  • Reifung
  • Schaumstabilisatoren
Mehr über ETH Zürich
  • News

    Batterien für die Mobilität von morgen

    Von 0 auf 100 km/h in 2,6 Sekunden. Eine Spitzengeschwindigkeit von 120 km/h. Und all dies betrieben von einer Batterie. Dies ist «julier», der erste Elektro-​Rennwagen, der 2013 einen Formula-​Student-Wettbewerb gewinnt, bei dem auch Autos mit Verbrennungsmotor im Teilnehmerfeld sind. Mitv ... mehr

    Farbwechsel zeigt Schäden im Material an

    ETH-​Forschende entwickelten ein neuartiges Laminat, das sich verfärbt, sobald sich das Material verformt. Damit schlagen die Materialforschenden zwei Fliegen mit einer Klappe: einen leichtgewichtigen Verbundwerkstoff, der sich selbst inspiziert. In vielen Bereichen hat die Leichtbauweise E ... mehr

    Ein Durchbruch für die Zukunft: Nanokristalle aus Amalgam

    ETH-​Forschenden ist es gelungen, Nanokristalle aus zwei verschiedenen Metallen mittels eines Amalgamierungs-​Prozesses herzustellen, bei dem ein flüssiges Metall ein festes durchdringt. Diese neue und überraschend intuitive Technik macht es möglich, eine grosse Bandbreite an intermetallisc ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr