RUB-Forscher ziehen am "molekularen Haken"

Neue Denkrichtung: Mechanische Kraft als Energiequelle in der Chemie

26.05.2003

Nanodrähte mit einem Durchmesser von nur einem einzigen Atom erzeugten Chemiker und Physiker um Prof. Dr. Dominik Marx (Lehrstuhl für Theoretische Chemie der RUB) und Prof. Dr. Harald Fuchs (Physikalisches Institut der Universität Münster) im virtuellen Labor: Sie zeigten durch Computersimulationen, dass man an einem "molekularen Haken" kurze monoatomare Golddrähte aus einer Oberfläche oder einem Cluster herausziehen kann. Mit dem Einsatz mechanischer Kraft als Energiequelle für chemische Anwendungen verfolgen sie eine neue Denkrichtung, denn bisher standen thermische, photochemische oder elektrische Energiequellen bei chemischen Reaktionen im Vordergrund. So schließen sie die Lücke zwischen Chemie und Nanophysik.

Bindungen reorganisieren sich

Als Oberfläche bzw. Cluster, aus dem der Draht gezogen werden soll, wählten die Bochumer und Münsteraner Forscher Gold. Als Ankermoleküle dienten bei den Berechnungen Thiolatmoleküle. Solche Moleküle reagieren gut mit Gold und gehen damit besonders innige Bindungen ein, sodass sie auch als Film auf Goldoberflächen aufgebracht werden können. Senkt man nun die Spitze eines atomaren Rasterkraftmikroskops (Atomic Force Microscope, AFM), versehen mit dem molekularen Haken SCH2 CH3, auf eine solche Oberfläche ab, so geht er eine Bindung mit dem Goldaggregat ein. Vergrößert man danach die Entfernung zwischen Spitze und Oberfläche unter Kraftanwendung wieder, so zieht die Spitze einen monoatomaren Golddraht aus dem Goldaggregat heraus. Dabei bilden sich als Zwischenprodukte kleine Goldkomplexe aus wenigen Atomen, die mit dem Ankermolekül zusammen von der Oberfläche weggezogen werden. Während des Ziehens findet eine permanente Reorganisation metallischer Bindungen innerhalb des Goldclusters statt. Nach und nach werden die Atome über eine Kaskade von Umwandlungen zu einer Kette auseinandergezogen.

Kraftaufwand berechnet

In ihren neuen Berechnungen prüften die Forscher, ob dieses Drähteziehen auch aus kleinsten Goldclustern heraus funktioniert. In ihnen sind die Bindungen zwischen den einzelnen Atomen wesentlich stärker als bei Oberflächen. Das überraschende Ergebnis: Das Ziehen von solchen Drähten aus Clustern funktioniert nicht nur, es wird auch fast dieselbe Kraft benötigt wie im Fall von Oberflächen. Der Kraftaufwand bewegt sich wie erwartet im Bereich weniger nano-Newton. Interessanterweise lassen sich die Isomerisierungsschritte auf atomarer Ebene anhand des Verhaltens der Kraft als Funktion des Abstands detailliert verfolgen. In einem weiteren Schritt könnte darüber nachgedacht werden, die kleinen Goldcluster ihrerseits auf nichtleitende Oberflächen aufzubringen und sie "zu verdrahten", so die Forscher.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!