Berliner Hahn-Meitner-Institut erzeugt Bose-Einstein Kondensat mittels Magnetfelder

28.05.2003
In einem Experiment am Hahn-Meitner-Institut in Berlin wurden zum ersten Mal die magnetischen Eigenschaften eines Kristalls für die Erzeugung eines Bose-Einstein-Kondensats genutzt. Dieser ungewöhnliche Materiezustand entstand, als der Kristall in ein starkes Magnetfeld von 14 Tesla gebracht wurde und konnte mit Hilfe von Neutronen aus dem Forschungsreaktor des Hahn-Meitner-Instituts nachgewiesen werden. Mit Magnetfeldern von bis zu 17 Tesla (mehr als das 200.000-fache des Erdmagnetfelds) bei Experimenten mit Neutronen stehen in Berlin weltweit einzigartige Forschungsmöglichkeiten zur Verfügung, die Voraussetzung für Erzeugung und Nachweis des Kondensats waren. Das Bose-Einstein-Kondensat Nach den Gesetzen der Quantenphysik können Teilchen, die sich in einem begrenzten Raum aufhalten, nicht eine beliebige Energie haben, sondern müssen einen der möglichen Energiezustände einnehmen. In einem Atom etwa sind die Elektronen, die den Kern umkreisen, auf bestimmte Niveaus verteilt, wobei jedes Niveau nur von einem Elektron besetzt wird. Dies ist eine besondere Eigenschaft von Fermionen, Teilchen, die - wie das Elektron - nie zu mehreren denselben Zustand besetzen können. Anders ist das bei den Bosonen. Diese halten sich gerne zu mehreren in einem Zustand auf, werden aber in der Regel durch ihre Wärmebewegung daran gehindert, sich alle im Grundzustand - dem Zustand niedrigster Energie - zu versammeln. Die Eigenschaften der Bosonen und die daraus folgende Möglichkeit, dass sich bei sehr tiefen Temperaturen alle Teilchen eines Systems in ein und demselben Zustand befinden, sagten in den 20-er Jahren des 20. Jahrhunderts der indische Physiker Satyendra Nath Bose und der vor allem als Begründer der Relativitätstheorie bekannte Albert Einstein voraus. Alle Teilchen, die an diesem Zustand teilhaben, haben exakt die gleichen Eigenschaften und verhalten sich auch identisch, was zu außergewöhnlichen physikalischen Phänomenen führen kann: sehr kaltes Helium wird superfluid, das heißt es fließt ohne innere Reibung, einige Substanzen werden bei niedrigen Temperaturen supraleitend, leiten also Strom ohne Widerstand. Hier bilden je zwei Elektronen ein so genanntes Cooper-Paar, das sich als Boson verhält. Besonders viel Aufsehen haben vor wenigen Jahren Bose-Einstein-Kondensate aus extrem kalten Natrium- oder Kaliumgasen erregt, in denen die Entstehung des Kondensats unmittelbar sichtbar gemacht werden konnte. Das Kondensat im Kristall Bei den Kristallen, in denen das Kondensat entdeckt worden ist, handelt es sich um die ungewöhnliche chemische Verbindung TlCuCl3 (Thallium-Kupfer-Trichlorid). Die Kupferatome wirken durch Ihren Spin (Eigenrotation) wie kleine Elementarmagnete. Normalerweise finden sich in diesen Kristallen jeweils zwei solche Atome mit entgegengesetzten Rotationsrichtungen zusammen, so dass deren Felder sich kompensieren. Erst wenn man von außen ein sehr hohes Magnetfeld anlegt, kann man die Spins zwingen, sich parallel zu stellen, das heißt es entsteht ein neuer Zustand niedrigster Energie, in dem die Spins parallel sein können. In diesem Grundzustand sammeln sich dann die Paare von Kupferatomen und bilden das Bose-Einstein-Kondensat. Während die weiter oben beschriebenen Kondensate durch Abkühlung erzeugt wurden, hielt man bei der Erzeugung des neuen Kondensats im Kristall die Temperatur auf 1,5 Kelvin beziehungsweise 50 Millikelvin konstant und erhöhte das Magnetfeld. Dabei veränderten sich bei einem Magnetfeld von rund sechs Tesla die Eigenschaften der Probe grundsätzlich, die nun ein Verhalten zeigte, das den theoretischen Voraussagen für ein Bose-Einstein-Kondensat entsprach. Untersuchung mit Neutronen - Magnetfelder am Hahn-Meitner-Institut machen das Kondensat erst möglich Die Eigenschaften der Probe wurden mit Hilfe der inelastischen Neutronenstreuung bestimmt. Neutronen sind für diese Untersuchungen besonders geeignet: Sie haben keine elektrische Ladung, aber ein magnetisches Moment, können also tief in die Probe eindringen und Informationen über deren magnetische Eigenschaften mitbringen. In den entscheidenden Experimenten wurden Neutronen aus dem Forschungsreaktor des Berliner Hahn-Meitner-Instituts genutzt. Nur hier konnte während der Untersuchung mit Neutronen ein Magnetfeld von 14 Tesla angelegt werden, das weit über dem Mindestwert von sechs Tesla lag und so nicht nur die Erzeugung sondern auch den eindeutigen Nachweis des Kondensats möglich machte. Beim Durchgang durch die Probe erzeugen die Neutronen Spinwellen - wellenförmige Schwingungen der Spins -, an die sie einen Teil ihres Impulses und ihrer Energie abgeben. Aus der Veränderung dieser Größen beim Neutron kann man auf die Eigenschaften der Spinwelle schließen. Im gewöhnlichen Zustand ist der Zusammenhang zwischen der Energie und dem Impuls einer Spinwelle quadratisch, das heißt seine Energie ist proportional zum Quadrat des Impulses. Im vorliegenden Falle war die Energie dem Impuls proportional, was - wie man mit Hilfe theoretischer Berechnungen zeigen konnte - ein klarer Hinweis auf die Entstehung eines Kondensats ist.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!