Swinging Atoms: Ultrakurze Röntgenblitze machen Atombewegungen sichtbar

Am Max-Born-Institut entwickelte Methode macht Vielzahl neuer Untersuchungen an Festkörpern und Biomolekülen (in kristallisierter Form) möglich

06.12.2004

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin-Adlershof haben atomare Bewegungen in einer Halbleiternanostruktur sichtbar gemacht. Sie nutzten dafür eine neuartige, durch einen Laser getriebene Quelle für ultrakurze Röntgenimpulse. "Mit unserer Variante der Femtosekunden-Röntgenbeugung können wir Veränderungen in allerkürzester Zeitskala nachverfolgen", erläutert Matias Bargheer, der die Arbeiten gemeinsam mit Michael Wörner, Nikolai Zhavoronkov und Thomas Elsässer durchgeführt hat.

Seit einiger Zeit arbeiten Wissenschaftler weltweit daran, ultrakurze Röntgenblitze herzustellen und mit ihnen elementare Abläufe in der Natur aufzuzeichnen, etwa atomare und molekulare Bewegungen oder das Brechen chemischer Bindungen. Derlei Prozesse laufen häufig im Zeitbereich unterhalb einer Pikosekunde ab, das heißt, sie sind kürzer als das Millionstel einer Millionstel Sekunde.

Am MBI gelang es nun, solche Bewegungen in einer Nanostruktur zu verfolgen. Die Struktur besteht - ähnlich wie viele optoelektronische Bauelemente - aus einer regelmäßigen Abfolge dünner Galliumarsenid- und Aluminium-Galliumarsenid-Schichten. Ein ultrakurzer Laserimpuls löst in diesem Schichtpaket Gitterschwingungen aus, also periodische Bewegungen der Atome im Kristallgitter, die durch Beugung eines verzögerten Röntgenimpulses an der schwingenden Struktur abgebildet werden. Die extrem kurze Wellenlänge der harten Röntgenstrahlung erlaubt eine hochpräzise Messung der atomaren Positionen. Durch Variation der Verzögerungszeit zwischen Anregung und Röntgenimpuls wird eine Sequenz von Schnappschüssen im Abstand von zirka 0,1 Pikosekunden aufgenommen.

Obwohl die Auslenkung der Atome nur ein Tausendstel ihres gegenseitigen Abstandes beträgt, lässt sich aus diesem "Video" die atomare Bewegung vollständig rekonstruieren. Damit wird der Erzeugungsmechanismus der Gitterschwingungen, im Fachjargon "displacive excitation of coherent phonons", erstmals eindeutig bestimmt. Das bedeutet, dass die Anregung der Elektronen die Gitterschwingungen auslöst und während der Vibration bestehen bleibt.

Mit der neuen Methode wird eine Vielzahl neuer Untersuchungen an Festkörpern und Biomolekülen (in kristallisierter Form) möglich. In einem nächsten Schritt will die MBI-Gruppe Supraleiter und ihr Verhalten untersuchen. "Womöglich können wir sogar das Henne-Ei- Problem bei Phasenübergängen lösen", sagt Bargheer. Bislang weiß man nicht, ob sich zunächst das Elektronensystem ändert und sich dann die Positionen der Atomkerne daran anpassen oder ob die Strukturänderung der Kerne das elektronische System zur Veränderung bringt. Weitere grundlegende Phänomene, in denen Elektronen Korrelationen aufweisen, könnten mit der Femtosekunden-Röntgenbeugung näher erforscht werden. Dazu zählt neben der Supraleitung auch der Magnetismus.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!