19.12.2006 - Technische Universität München

Die doppelte Magie der superschweren Kerne

TUM-Radiochemiker synthetisieren Hassium-270

Einer internationalen Kollaboration, angeführt von Wissenschaftlern des Instituts für Radiochemie der TU München in Garching (Dr. Alexander Yakushev, Lehrstuhl Prof. Andreas Türler) und der Gesellschaft für Schwerionenforschung in Darmstadt, ist es erstmals gelungen, nur vier Atome des Kerns Hassium-270 zu synthetisieren und nachzuweisen. Mit ihrer Arbeit haben die Wissenschaftler experimentell gezeigt, dass der Weg zu superschweren Elementen über eine näher gelegene, ebenfalls durch Schaleneffekte stabilisierte Region führt. Auch innovativen Chemikern steht somit die Erforschung aller bisher nur mit physikalischen Methoden nachgewiesenen Elemente im Periodensystem offen.

Das schwerste in größeren Mengen in der Natur vorkommende Element ist Uran mit der Ordnungszahl 92. Forscher fragen jedoch: Wie schwer kann ein Kern werden, ohne spontan in zwei Fragmente zu zerfallen? Und gibt es nicht doch weitaus schwerere Elemente, die sich eventuell sogar in der Natur nachweisen lassen? In den letzten Jahrzehnten konnten Wissenschaftler an Beschleunigern wenige Atome bis hin zum Element 118 künstlich synthetisieren, indem sie leichtere Elemente fusionierten. Die schwersten so hergestellten Elemente sind jedoch alle radioaktiv und bestehen jeweils nur für kurze Zeit. Ihre Existenz verdanken sie dem sogenannten Schaleneffekt: "Magische" Zahlen von Protonen und Neutronen sind in der Lage, einen Kern zusätzlich zu stabilisieren. Kerne, die sowohl eine magische Protonenzahl als auch eine magische Neutronenzahl enthalten, sind "doppelt magisch".

Der schwerste bekannte doppelt magische Kern ist Blei mit der Massenzahl 208. Bereits in den 1960-er Jahren wurde auf Basis des Schalenmodells des Kerns vorhergesagt, es müsse eine Insel der superschweren Elemente geben. Zentrum dieser Insel sollte ein sphärischer, doppelt magischer Kern mit der Ordnungszahl 114 und der Neutronenzahl 184 sein. Anzeichen für die tatsächliche Existenz dieser Region erhöhter Stabilität sind Berichte über eine Serie von Experimenten des Flerov-Labors im russischen Dubna, in denen die Synthese der Elemente 112 bis 118 geglückt sein soll. Neueste theoretische Berechnungen haben nun gezeigt, dass auch deformierte Kerne doppelt magische Schalenabschlüsse bilden können; der nächste Schalenabschluss ist deshalb bereits beim Kern Hassium-270 mit der Ordnungszahl 108 und der Neutronenzahl 162 zu erwarten. Das Auftauchen einer weiteren Insel aus dem "Meer der Instabilität" hat das Bild einer einzigen weit draußen liegenden Insel der superschweren Elemente erheblich modifiziert.

Die Synthese des Hassium-270 gelang den Münchner und Darmstädter Wissenschaftlern, indem sie ein dünnes Target aus Curium-248 mit einem Strahl von Magnesium-26-Ionen über einen Zeitraum von mehreren Wochen intensiv beschossen. Die beiden Atome verschmolzen zum Element Hassium. Um die äußerst selten entstehenden Hassiumatome nachzuweisen, bedienten sich die Forscher eines kontinuierlich arbeitenden chemischen Separationssytems. Da Hassium zur Gruppe 8 des Periodensystems gehört, so wie Osmium, verbindet es sich sehr leicht mit vier Sauerstoffatomen zu einem sehr flüchtigen gasförmigen Molekül. Durch eine kontinuierliche und sehr schnelle gaschromatographische Trennung und eine anschließende Abscheidung in einem Kryodetektor ließ sich der radioaktive Zerfall der synthetisierten Hassiumatome höchst effizient nachweisen. Dabei beobachteten die Forscher, dass Hassium-270 nicht etwa spontan in zwei Bruchstücke zerfällt, sondern erst nach einer gewissen Lebensdauer einen Heliumkern emittiert.

Aus der gemessenen Zerfallsenergie - die sehr gut mit theoretisch vorhergesagten Werten übereinstimmte - konnte auch eine Halbwertszeit des Hassium-270 von immerhin einer halben Minute abgeleitet werden. Durch die Emission eines Heliumkerns verwandelt sich das Hassium-270 in ein leichteres Nuklid: Seaborgium-266. Dieses zerfällt mit einer Halbwertszeit von etwa einer halben Sekunde spontan in zwei Fragmente - wiederum ein Hinweis auf die außerordentliche Stabilität des Hassium-270.

Originalveröffentlichung: "Physical Review Letters 2006, 97, 24250.

Fakten, Hintergründe, Dossiers
  • Trennung
  • Seaborgium
  • Radiochemie
Mehr über TU München
  • News

    TUM IDEAward für Quanten-Tech-Gründungsprojekt

    Diamanten für die Quantentechnologie, ein Test für Harnwegsinfekte und eine Machine-Learning-Methode für Computerspiel-Tests: Diese drei Gründungsideen sind mit dem TUM IDEAward ausgezeichnet worden. Premiere hatte der TUM Deep Tech IDEAward für Teams, die sich in anderen Ländern gefunden h ... mehr

    Mehr Strom, weniger Kohlendioxid

    Biogas ist ein wichtiger Faktor bei der Umsetzung der Energiewende. Doch der Wirkungsgrad der Anlagen lässt sich noch steigern. Forscher der Technischen Universität München (TUM) haben ein Anlagenkonzept entwickelt, das mehr Strom produzieren und klimafreundlicher arbeiten soll. Damit überz ... mehr

    Produktive Kaskade

    Ausgehend von erhältlichen Chemikalien gelang einem deutschen Forschungsteam die Totalsynthese von Agarozizanol B, einem interessanten Naturstoff aus Rosenholz. Schlüsselsequenz der in der Zeitschrift Angewandte Chemie beschriebenen relativ kurzen Syntheseroute ist eine photochemische Reakt ... mehr

  • Videos

    Scientists pair up two stars from the world of chemistry

    Many scientists consider graphene to be a wonder material. Now, a team of researchers at the Technical University of Munich (TUM) has succeeded in linking graphene with another important chemical group, the porphyrins. These new hybrid structures could also be used in the field of molecular ... mehr

  • q&more Artikel

    Biobasierte Rohstoffströme der Zukunft

    Der anthropogene Klimawandel und die steigende Weltbevölkerung im Verbund mit zunehmender Urbanisierung induzieren globale Herausforderungen an unsere Gesellschaft, die nur durch technologische Fortschritte gelöst werden können. mehr

    Ein Geschmacks- und Aromaschub im Mund

    Der Ernährungstrend hin zu gesünderen Snacks ist ungebremst. Snacks aus gefriergetrockneten Früchten erfüllen die Erwartungen der Verbraucher an moderne, hochwertige Lebensmittel. Allerdings erfordert die Gefriertrocknung ganzer Früchte lange Trocknungszeiten ... mehr

    Ernährung, Darmflora und Lipidstoffwechsel in der Leber

    Die Natur bringt eine enorme Vielfalt an Lipidmolekülen hervor, die über unterschiedliche Stoffwechselwege synthetisiert werden. Die Fettsäuren sind Bausteine verschiedener Lipide, einschließlich Zellmembranlipiden wie die Phospholipide und Triacylglyceride, die auch die Hauptkomponenten de ... mehr

  • Autoren

    Prof. Dr. Thomas Brück

    Thomas Brück, Jahrgang 1972, absolvierte sein Bachelorstudium (B.Sc.) 1996 in den Fächern Chemie, Biochemie und Management an der Keele University in Stoke on Trent, U.K. Er hält einen Masterabschluss (1997) in Molekularmedizin von derselben Universität und promovierte 2002 auf dem Gebiet d ... mehr

    Dr. Norbert Mehlmer

    Norbert Mehlmer, Jahrgang 1977, studierte Biologie an der Universität Salzburg und verfasste seine Diplomarbeit am Max-Planck-Institut für molekulare Genetik, Berlin. Er promovierte an den Max F. Perutz Laboratories (MFPL) der Universität Wien auf dem Gebiet Genetik/Mikrobiologie. Im Anschl ... mehr

    Dr. Mahmoud Masri

    Mahmoud Masri schloss sein Studium der Angewandten Chemie an der Universität Damaskus ab und erhielt 2010 seinen Master. Anschließend arbeitete er fünf Jahre als Qualitätssicherungsmanager. 2019 promovierte er im Fach Biotechnologie an der Technischen Universität München (TUM) mit einer Arb ... mehr

Mehr über GSI
  • News

    Woher kommt das Gold?

    Wie werden chemische Elemente in unserem Universum produziert? Woher kommen insbesondere schwere Elemente wie Gold oder Uran? Mithilfe von Computersimulationen zeigt ein Forschungsteam des GSI Helmholtzzentrums für Schwerionenforschung in Darmstadt gemeinsam mit Kollegen aus Belgien und Jap ... mehr

    Kriterien zur Aufnahme superschwerer chemischer Elemente in das Periodensystem

    Wann genau existiert ein neu erzeugtes Element eigentlich wirklich? Welche Voraussetzungen müssen erfüllt sein, damit seine Messung anerkannt und das Element in das Periodensystem der chemischen Elemente aufgenommen wird? Und wem wird im Falle mehrerer Ansprüche die Entdeckung und damit das ... mehr

    Ordnung im Periodensystem – Ionisierungsenergien bestätigt Actinoiden-Serienende bei Lawrencium

    Eine internationale Gruppe von Forschern unter Beteiligung des GSI Helmholtzzentrums für Schwerionenforschung in Darmstadt sowie seiner beiden Außenstellen, den Helmholtz-Instituten Mainz und Jena, hat die ersten Ionisierungsenergien der künstlich erzeugten Elemente Fermium, Mendelevium, No ... mehr

  • Videos

    Wie entstand das Periodensystem?

    Am GSI Helmholtzzentrum in Darmstadt wurden sechs neue Elemente entdeckt, die Einzug in das Periodensystem hielten. Doch wie entstand diese Ordnung der Elemente? Zur Taufe des Elements Copernicium im Juni 2010 blickten wir zurück auf die Geschichte des Periodensystems. mehr

  • Forschungsinstitute

    GSI Helmholtzzentrum für Schwerionenforschung GmbH

    Die uns umgebende Materie in ihrem Aufbau und Verhalten zu verstehen, ist das Ziel der wissenschaftlichen Forschung am GSI Helmholtzzentrum für Schwerionenforschung. GSI betreibt eine große, weltweit einmalige Beschleunigeranlage für Ionenstrahlen. Forscher aus aller Welt nutzen die Anlage ... mehr