Neues Verfahren zur Herstellung von Verbindungshalbleitern

22.12.2006

Zum Abschluss eines DFG-Projekts melden Mitarbeiter des Instituts für Kristallzüchtung (IKZ) einen großen Erfolg: Sie haben Galliumarsenid (GaAs) ohne die sonst immer erforderliche Boroxid-Abdeckung gezüchtet. Mit einem bereits früher am IKZ entwickelten Verfahren zur Herstellung der begehrten Drei-Fünf-Halbleiter haben sie neue Eigenschaften des Materials aufgedeckt. Jetzt schon sei das IKZ in der Lage, mit der Methode "gezielte Messproben für Forschung und Industrie anzufertigen", schreiben der Projektleiter, Prof. Peter Rudolph, und der für das Projekt verantwortliche Wissenschaftler, Dr. Frank M. Kießling, in ihrem Abschlussbericht.

Für die industrielle Produktion sind die immer wieder auftretenden Defekte in den Halbleiter-Kristallen schon seit längerer Zeit ein teures Problem: Solche Defekte führen zu einer hohen Ausschussrate. Teilweise war bekannt, dass die Defekte mit dem Konzentrationsverhältnis der Elemente, zum Beispiel Gallium und Arsen, in der Schmelze zusammenhängen. Kießling berichtet: "Bislang gab es kaum Erfahrungen dazu, wie man dieses Verhältnis während des Züchtungsvorgangs kontrollieren und beeinflussen kann." Industriepartner des IKZ wie die Freiberger Compound Materials GmbH haben deshalb mit großem Interesse das Projekt beraten und unterstützt.

Die verfeinerte Schmelztechnik kann auch für die Züchtung anderer Drei-Fünf-Halbleiter verwendet werden, sie stellt eine grundlegende verfahrenstechnische Weiterentwicklung dar. Die Industrie könnte damit perfektere Kristalle produzieren. Die Halbleiter werden zum Beispiel für Laser- und Leuchtdioden, Hochfrequenzschaltkreise (in Handys und ähnlichen Geräten) und Solarzellen gebraucht. Bis zur industriellen Nutzung müsste aber die Züchtungstechnologie noch ausgereift und prozesstechnisch gestaltet werden. Dies war auf der am IKZ durchgeführten Etappe der Grundlagenforschung nicht das Ziel.

Die Herstellung von Drei-Fünf-Halbleitern leidet an dem fertigungstechnischen Problem, dass je einer der Inhaltsstoffe - in diesem Fall das Arsen - leicht flüchtig ist. Daher werden diese Halbleiter traditionell mit einer Boroxid-Abdeckung gezüchtet. Diese zusätzliche Schicht auf der Schmelze dient dazu, die Verflüchtigung des Arsens und damit die sich verringernde Konzentration des Arsens in der Schmelze zu verhindern. "Durch das Boroxid kommt es allerdings auch zu Verunreinigungen", erklärt Kießling. Und: "Bei manchen Defekttypen konnte man gar nicht bestimmen, ob sie vielleicht auch mit dem Boroxid zusammenhängen, da es keine alternativen Proben gab, die man hätte prüfen können."

Die Experten am IKZ haben eine Apparatur genutzt, in der Galliumarsenid ohne Boroxid-Abdeckung entsteht. Ausgangspunkt war ein Herstellungsverfahren namens "Vapour Pressure Controlled Czochralski (VCz)", das ein IKZ-Team um Dr. Michael Neubert erstmals realisiert hatte und das nun weiterentwickelt wurde. Rudolph erläutert den Hintergrund: "Der Trick dabei ist eine zusätzlich eingebaute heiße Wand in der Schmelzanlage und die Idee der Dampfdruckkontrolle." Schafft man es zu kontrollieren, in welchen Ausmaßen Arsen sich aus der Schmelze verflüchtigt, so kann man die Zusammensetzung der Schmelze gezielt an Ort und Stelle kontrollieren. Arsen, das sich verflüchtigt, sammelt sich immer an der kältesten Stelle der Wand. "An diesem Ort", erklärt Kießling, "befindet sich eine Arsenquelle, durch die das flüchtige Element zum Ausgleich in die Anlage geleitet werden kann". Mit dieser Kombination von heißer Wand und Arsenquelle - eine technische Herausforderung angesichts der komplizierten Schmelzanlagen - können Frank Kießling und seine Kollegen eine Boroxid-freie GaAs-Kristallschmelze in ihrem Arsen-Gehalt steuern.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Rotating Ring Disk Elektrode Rotator

Rotating Ring Disk Elektrode Rotator von C3 Prozess- und Analysentechnik

Präzise Rotation und einfacher Elektrodenwechsel - Entdecken Sie das innovative Rotator-System!

rotierende Scheibenelektroden
Elektrochemische Messzellen und Elektroden

Elektrochemische Messzellen und Elektroden von C3 Prozess- und Analysentechnik

Ersetzen Sie viele Messzellen mit unserer vielseitigen Voltammetriezelle für präzise Messergebnisse

elektrochemische Messzellen
Interface 1010

Interface 1010 von C3 Prozess- und Analysentechnik

Optimieren Sie Ihre elektrochemische Messungen für präzise Ergebnisse und vielfältige Anwendungsmöglichkeiten

Potentiostate
Reference 620

Reference 620 von C3 Prozess- und Analysentechnik

Potentiostat / Galvanostat / ZRA mit maximaler Empfindlichkeit und minimalem Rauschen für wegweisende Forschung

elektrochemische Systeme
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...