Meine Merkliste
my.chemie.de  
Login  

Wärmedämmung



Wärmedämmung sind Maßnahmen zur Eindämmung der Abgabe thermischer Energie von Gegenständen oder ganzen Gebäuden an ihre Umgebung durch Einsatz von Dämmstoffen.

 

Die Umgangssprache spricht in solchen Fällen häufig von Isolierung, doch während diese vollständig trennt, verringert eine Dämmung nur den Austausch von Energie. Beispiele für die Anwendung von Wärmedämmungen an Gegenständen oder Anlagen sind Bettdecke, Thermobekleidung, Kühltasche, Kühl- und Heizungsanlagen mitsamt ihren Rohrleitungen oder auch Fahrzeuge. In der Raumfahrttechnik setzt man Multilayer-Insulation-Folien ein.

Inhaltsverzeichnis

Wärmedämmung von Gebäudeflächen

Die Wärmedämmung von Gebäuden zur Einsparung von Heizenergie hat im Rahmen des Bewusstwerdens für nachhaltige Entwicklung und der Verteuerung von Energien in den 90er Jahren des 20. Jahrhunderts einen hohen Stellenwert erhalten. Insbesondere auch deshalb, weil zeitgleich gesetzliche Fördermaßnahmen zur Wärmedämmung von Gebäuden beschlossen wurden.

Baustoffe wie Stahl, Beton und Glas, aber auch Natursteine sind relativ gute Wärmeleiter, so dass die daraus errichteten Außenwände von Gebäuden bei kalter Witterung sehr schnell die Wärme von der Innenseite an die Außenseite abgeben.

Deshalb verkleidet man heute derartig gebaute Wände mit so genannten Dämmstoffen; das sind Materialien mit geringer Wärmeleitung. Im Sommer soll die Dämmung verhindern, dass Wärme von außen in ein Haus eindringt, damit es innen einigermassen kühler ist als aussen. Gebräuchlich sind:

Arten der Wärmedämmung

 

Man unterscheidet Außen-, Innen- und Kerndämmung. In weiten Teilen Deutschlands ist der einschalige Wandaufbau aus wärmedämmenden Baustoffen wie zum Beispiel Ziegel oder Bims- und Porenbeton gängig. In Norddeutschland ist der zweischalige Wandaufbau mit Kerndämmung häufig.

Nachträglich wird die Wärmedämmung meistens durch eine Außendämmung verbessert (Wärmedämmverbundsystem/Vorhangfassade). Neben der Heizwärmeeinsparung im Winter erreicht diese Form der Wärmedämmung eine Verbesserung der Behaglichkeit auch im Sommer, weil die Masse von Wänden, Decken und Boden die Raumtemperatur annimmt und Wärme speichert.

Sonderfälle

In manchen Fällen ist eine Außendämmung nicht möglich oder nicht gewünscht. So kann man bei Lehmaußenwänden in Fachwerkhäusern und Gebäuden, deren Außenfassade erhalten bleiben soll, auch nachträglich eine Innendämmung aufbringen. Innendämmungen sind problematischer, da der Taupunkt nach innen wandert und dadurch die Gefahr von Feuchtigkeitsbildung und damit von Gebäudeschäden besteht. Wenn die Konstruktion mit diffusionsoffenen kapillaraktiven Dämmstoffen ausgeführt wird, lassen sich diese Probleme heute im Regelfall beherrschen.
Innendämmungen mit Dampfsperren sind ebenfalls möglich, müssen jedoch sehr sorgfältig ausgeführt werden, da bei Beschädigung der Dampfsperre sich bildende Feuchtigkeit nicht mehr leicht aus der Konstruktionsebene, durch fehlendes Dampfdruckgefälle, entweichen kann. In jedem Fall muss eine Innendämmung durchgehend luftdicht gegenüber der Raumluft abgeschlossen werden, um Hinterlüftung und dadurch zwangsläufig entstehende Kondensation durch Konvektion zu vermeiden.

Optimale Eigenschaften von Dämmstoffen

Der optimale Dämmstoff besitzt mehrere Eigenschaften: Er ist schlecht wärmeleitend, hat also einen niedrigen statischen U-Wert, aber auch eine hohe Wärmekapazität, die eine Verlangsamung der Gebäudeerwärmung im Sommer oder Auskühlung im Winter bewirkt. Er ist feuchteresistent und hydrophil, kann also auftretende Feuchtigkeit schnell verteilen und wieder abgeben. Da Dämmstoffe meistens nicht all diese Eigenschaften auf einmal besitzen, werden sie oft kombiniert eingesetzt.

Physikalische Maßgröße und Einheit

Zur Kennzeichnung der wesentlichen Eigenschaften von Wärmedämmungen dienen verschiedene Größen: Die Wärmeleitfähigkeit (meistens als λ-Wert bezeichnet) bezieht sich auf jeweils einen Baustoff und hat die Einheit W/(m K); der Wärmedurchgangskoeffizient (meistens als U-Wert bezeichnet - früher: "k-Wert") hängt von der kompletten Schichtenfolge einer Konstruktion ab und hat die Einheit W/(m2K).
Wie schnell sich eine Temperaturänderung in einem Material ausbreitet, hängt nicht nur von seiner Wärmeleitfähigkeit, sondern auch von seinem Wärmespeichervermögen ab. Maßgeblich hierfür ist die Temperaturleitfähigkeit, mit der Maßeinheit m2/s.

Probleme beim nachträglichen Einbau von Wärmedämmungen

Eine Wärmedämmung muss physikalische Gegebenheiten berücksichtigen. Nicht fachgerecht ausgeführte Konstruktionen können für erhebliche Probleme sorgen, meistens sind dieses Feuchtigkeitsprobleme durch Kondensation (siehe auch Taupunkt).
Einige Beispiele hierzu:

  • Eine einfache und effektive Maßnahme ist der Austausch von Fenstern. Bei schlecht gedämmten Gebäuden mit schlechtem U-Wert kann dies dazu führen, dass die kältesten Stellen, an denen sich gegebenenfalls Feuchtigkeit niederschlägt, nicht mehr die Fenster sind (wo leicht abgewischt werden kann), sondern andere Stellen (meistens Raumecken). Da die modernen Fenster einen guten U-Wert haben, verschiebt sich der Taupunkt (sofern überhaupt einer existiert) an den Rand des Fensters (meistens unzureichende Anschlussdämmung an die Fenster) - Schimmelbildung kann die Folge sein. Bei solchen Gebäuden ist deshalb eine Dämmung der Außenwände mit in Betracht zu ziehen. Durch eine veränderte Dämmung ändert sich der Feuchtigkeitseintrag in die Raumluft nicht. Aber der Austrag der Feuchtigkeit muss geändert werden - entweder durch ausreichendes manuelles Lüften oder eine kontrollierte Wohnraumlüftung. Durch ausreichende Lüftung wird gesichert, dass die relative Raumluftfeuchte nicht über 65% steigt. Damit existiert in der Regel auch in den Wänden kein Taupunkt, da der Wasserdampfdruck über der Wanddicke in der Regel schneller als der Sättigungsdampfdruck (infolge Temperaturabnahme) absinkt.
  • Wird eine Innendämmung mit Mineralwolle angebracht, so sinkt die Oberflächentemperatur der vorhandenen Wand. Ist keine Dampfsperre angebracht, bleibt aber der Wasserdampfdruck der gleiche wie vorher. Deswegen steigt die relative Feuchte. Dadurch kann Wasser in die Konstruktion eindringen und zu einer Feuchtebelastung der Konstruktion führen. Daher muss bei einer Innendämmung entweder ein sorgfältig zur Innenluft dichter Aufbau mit feuchteadaptiver Dampfbremse oder ein diffusionsoffener hydrophiler Dämmstoff verwendet werden. Hier gilt das Prinzip, die Konstruktion / der Wandaufbau muss in der Lage sein mehr Dampfdiffusion durch- und abzuleiten als in die Konstruktion eingeleitet wird.
  • Das Eindringen von Wasserdampf sollen Dampfsperren aus speziellen Folien verhindern. Wird die Montage mangelhaft ausgeführt oder die Folie später beschädigt, sind ebenfalls Feuchteschäden die Folge.
  • Ebenso ist die Einbeziehung von Wärmebrücken bei Wärmedämmmaßnahmen erforderlich.

Wärmedämmung – ein kontroverses Thema

Die Wärmedämmmaßnahmen wurden oft für Bauschäden verantwortlich gemacht, meistens als Feuchtigkeitsschäden. Tatsächlich sind Entwurfs- und Baufehler oder falsches Verhalten der Bewohner dafür verantwortlich. Als Planungshinweis bezüglich der Feuchtigkeit dienen die Normen DIN 4108-3 bzw. EN ISO 13788, die eine Berechnung nach dem Glaserverfahren benutzen. Hier wird anhand physikalischer Parameter wie Dampfdruck, Temperaturen und Wärmeleitfähigkeit der Konstruktion bestimmt, ob während der kritischen Winterperiode in der Konstruktion Kondensat auftreten kann und wieviel. Aufgabe des Planers ist es, die Konstruktion feuchtigkeitssicher zu wählen. Ob die nach der Norm allgemein als unkritisch geltende Kondensatmenge von 0,5 bis 1 kg/m2 im speziellen Fall auch unkritisch ist, unterliegt dem Fachwissen des Planers - ggf. hat er eine andere Konstruktion zu wählen. In der Regel kann eine geringe Kondensatmenge von der Konstruktion aufgenommen und während der Wärmeperiode wieder abgegeben werden. Wenn der Planer aber nicht berücksichtigt, ob der Konstruktionsaufbau zur Wasseraufnahme überhaupt in der Lage ist, bzw. kapillaraktive Baustoffe das entstehende Kondensat fast sofort ableiten, ist die Berechnung weit von der Realität entfernt. Deshalb gilt das Verfahren als überholt und es gibt ausführlichere Rechenprogramme (Links), die bessere Ergebnisse liefern. In einem neuen Norm-Entwurf soll dieses berücksichtigt werden.

Eine Gruppe, oft „Ziegelphysiker“ genannt, stellt aus Unkenntnis der Physik die Wärmedämmung generell in Frage. Die Bauphysik lasse angeblich erhebliche solare Gewinne bei massiven Baustoffen (wie z. B. Ziegeln) unberücksichtigt. Die Ziegelphysiker erfanden deshalb einen neuen „effektiven“ U-Wert Ueff. Der wissenschaftliche Nachweis, dass diese Behauptung falsch ist, ist sowohl experimentell als auch theoretisch erbracht. Für den solaren Gewinn - gemittelt über einen ausreichend langen Zeitraum (2 Tage bis 2 Wochen, je nach Speicherkapazität) - ist allein der U-Wert und die Oberflächengestaltung verantwortlich. Bei einer hellen Oberfläche wird z. B. viel Sonnenlicht reflektiert (im Sommer erwünscht - im Winter unerwünscht). Die Masse des Bauteils ist nur für die Zeitdauer der Wärmeausbreitung verantwortlich. Nachfolgend die Erklärung, warum kein Unterschied im Energiegewinn entsteht:

Zunächst nehmen Konstruktion aus homogenem Material (ganz gleich ob aus leichten wie z.B. Dämmstoff oder schweren wie z.B. Ziegel) bei gleicher Oberflächenfarbe fast die gleiche Solarenergie auf. Eine leichte Konstruktion heizt sich dabei an der Oberfläche und in der Tiefe schneller und stärker auf, gibt aber wegen der hohen Oberflächentemperatur auch schon während der Einstrahlung mehr Wärme ab. Dabei ist ein Großteil der Wärmeenergie in der Tiefe (innen), so dass nach dem Ende der Einstrahlung relativ wenig nach außen abgegeben wird. Eine massereiche Konstruktion nimmt an der Oberfläche genau so viel Wärme(energie) auf - hat dabei aber eine geringere Temperatur und dementsprechend eine geringere Abstrahlung. Allerdings bleibt die aufgenommene Wärme näher unter der Oberfläche konzentriert, da mehr gespeichert wird. Nach Ende der Einstrahlung wird relativ viel gespeicherte Wärme nach außen abgegeben, da der Weg von der warmen Zone nach innen viel länger ist. Die rechnerische Untersuchung zeigt dabei, dass nach ausreichend langer Zeit der solare Energiegewinn bei gleichen U-Werten der gleiche ist. Auch die experimentelle Überprüfung (z. B. die EMPA-Untersuchung Nr. 136788 mit Beteiligung eines Ziegelphysikers) bestätigte die theoretischen Ergebnisse.

Feuchtetransport: hygroskopische Speicherfähigkeit und Kapillarität

Die Fähigkeit, Wasser kurzzeitig aufzunehmen und so bei Situationen wie Schlagregen oder Kondensatbildung eine kritische Durchfeuchtung zu vermeiden, wird als hygroskopische Speicherfähigkeit bezeichnet (siehe auch w-Wert, Wasseraufnahmekoeffizient). Kapillaraktive Baustoffe sorgen dann für den Abtransport von Feuchtigkeit innerhalb der Konstruktion. Baustoffe, die beide Eigenschaften vereinen, sind u. a. Ziegel, Gips, Holzfaserwerkstoffe, Lehm oder Calciumsilikat-Platten. Porenbeton besitzt zwar eine hohe Speicherfähigkeit, ihm fehlt aber die Eigenschaft, das Wasser wieder schnell abzugeben. Wichtig hierbei ist bei Konstruktionen, den Wassertransport nicht durch ungeeignete Wandbeschichtungen (Farben, Tapeten, Dampfsperren) zu behindern.
Um hierbei Probleme zu vermeiden, ist es unerlässlich, dass die Wandkonstruktion den Feuchtetransport nicht behindert.

Wärmedämmstoffe im Vergleich

Dämmstoff Rohdichte [kg/ m³] Wärmeleitfähigkeit λR* [W/mK] Schadstoffabgabe bei der Nutzung Schadstoffabgabe entlang der Produktlebenslinie Primärenergieinhalt Baustoffklasse**
Blähglimmerschüttung (Vermiculit)70 - 1500,07neinneinmittelA
Blähperlit-Schüttung900,05neinneinmittelA
Blähton-Schüttung3000,16neinneinmittelA
Calciumsilikat-Platte 3000,065neinnein?A1
Cellulose-Schüttung (Recycling)500,045neinnein1)sehr geringB
Holzfaserweichplatten130 - 2700,05neinnein1)sehr geringB
Holzwolle-Leichtbauplatten3600,09neinneingeringB
Kokosfasermatten bzw. -platten75 - 1250,045neinneingeringB
Kork120 - 2000,045nein3)nein3)geringB
Mineralschaum-Platten3500,045neinneinmittelA1
Mineralwolleplatten (Glas, Steinwolle)800,04möglich2)ja1),2)mittelA
Polystyrol-Platten30 - 600,03ja4)ja4)hochB
Polyurethan-Platten300,025möglich5)ja5)hochB
Schafwolle20 - 1200,04nein7)nein7)geringB
Schaumglas-Platten1300,05nein6)neinmittelA
Schilfrohr-Plattenk.A.0,06neinneingeringB
Strohplatten5000,11neinneingeringB

1) = Ggf. Atemschutz bei der Verarbeitung zum Schutz gegen Faserfreisetzung erforderlich.
2) = Fasern kritischer Geometrie sind im Tierversuch krebserzeugend. Faserfreisetzung ggf. möglich.
3) = Bei schlechten Qualitäten bzw. bei Verwendung von Chemikalien Emissionen möglich.
4) = Bei Gebrauch Abgabe von Styrol möglich. Bei der Herstellung und im Brandfall Freisetzung giftiger Chemikalien.
5) = Bei Gebrauch Abgabe von Reaktionsprodukten der Isocyanate nicht auszuschließen. Bei der Herstellung und im Brandfall Freisetzung giftiger Chemikalien.
6) = Bei Verletzung der Poren Freisetzung von Schwefelwasserstoff.
7) = Pestizidrückstände möglich. Verwendung von Mottenschutzmitteln möglich.

*Index R = nach Norm ermittelter Rechenwert
**Baustoffklassen: A = nicht brennbar; B = brennbar

 
Dieser Artikel basiert auf dem Artikel Wärmedämmung aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.