15.10.2009 - Universität des Saarlandes

Forscher entwickeln neues Verfahren zur Graphen-Gewinnung

Kohlenstoff wird die Informationstechnologie revolutionieren. Vielleicht schon in einigen Jahren arbeiten die elektronischen Bauteile von Computern, die derzeit auf Silizium-Technologie basieren, mit einem Stoff, der aus einer Schicht von Kohlenstoff-Atomen besteht: Graphen. Obwohl Kohlenstoff als Bestandteil nahezu jeder organischen Substanz universell verfügbar ist, war es bisher nicht möglich, Graphen großflächig zu gewinnen. Eine Arbeitsgruppe aus Chemikern und Physikern der Universität des Saarlandes hat nun ein grundlegend neues Verfahren entwickelt, mit dem graphenbeschichtete Oberflächen hergestellt werden können.

Eine einzelne Lage von Kohlenstoff-Atomen, die sich wabenartig zu einem geordneten Gitter fügen: Dieser Stoff namens Graphen wird der Computertechnologie in den nächsten Jahrzehnten völlig neue Möglichkeiten eröffnen. Davon sind die meisten Forscher überzeugt. Der Grund: Graphen kann in immer noch kleiner werdenden elektronischen Bauteilen verwendet werden - im Gegensatz zu Silizium, das in winzigsten Transistoren zunehmend instabil wird. Graphen ist dagegen sehr stabil und bietet einen weiteren entscheidenden Vorteil: Es arbeitet in einem Transistor tausendmal schneller als Silizium.

Graphen besteht aus einer einzelnen Schicht reinen Kohlenstoffs und ist daher nur so dick wie ein Atom. "Übereinandergestapelte" Graphen-Schichten bilden Graphit, das beispielsweise in Bleistift-Minen verwendet wird. Bisherige Versuche, Graphen durch Spaltung von Graphit zu gewinnen, waren in der Vergangenheit zwar erfolgreich, jedoch nur im Labormaßstab. Für Anwendungen in der Industrie, wo großflächige Schichten erzeugt werden müssen, ist diese Methode unpraktikabel.

Einer Forschergruppe der Universität des Saarlandes ist es nun gemeinsam mit Physikern aus Augsburg und Nottingham gelungen, ein Verfahren zu entwickeln, mit dem Oberflächen großflächig mit einer einzigen Lage von Graphen beschichtet werden können. Im Gegensatz zu den bisherigen Ansätzen handelt es sich um einen chemischen Prozess, bei dem Kohlenstoff aus einer flüssigen Vorläuferverbindung abgeschieden wird. Als Ausgangsstoffe testeten die Wissenschaftler verschiedene kohlenstoffhaltige Substanzen wie beispielsweise Aceton, das sich aus Kohlenstoff, Wasserstoff und Sauerstoff zusammensetzt. Diese so genannten Vorläufermoleküle oder Precursoren wurden in einem Ultrahochvakuum auf bis zu 700 Grad Celsius erhitzt. "Dabei bleiben vom Aceton mit seinen drei Kohlenstoff-Atomen immer zwei Kohlenstoff-Atome in Form einer Hantel zurück, die sich zu einem wabenartigen Graphen-Gitter anordnen", sagt Dr. Frank Müller vom Institut für Experimentalphysik und erklärt, warum die so entstandene Graphen-Lage ideal ist: "Die Atome in diesem Gitter sind hoch geordnet, und es handelt sich um genau eine Schicht - also das, was wir brauchen."

Müller hat gemeinsam mit dem Physik-Professor Stefan Hüfner verschiedene Precursoren aus Kohlenstoff, Wasserstoff und Sauerstoff getestet. Durchgeführt wurden die Arbeiten im Rahmen des EU-Projektes "Nanomesh" unter der Leitung von Hermann Sachdev, Privatdozent für Anorganische Chemie an der Saar-Uni, der sich insbesondere mit der Precursorchemie beschäftigt. "Wir konnten zeigen, dass es einen universellen Bildungsweg für Graphen gibt", erläutert Sachdev. "Dieser Bildungsweg führt immer über die gleichen molekularen Zwischenstufen aus zwei Kohlenstoff-Atomen, unabhängig davon, welche Vorläufermoleküle wir gewählt haben."

Einen entscheidenden Nachteil hat das Verfahren: Bisher ist die Graphen-Abscheidung nur auf metallischen Oberflächen gelungen. Diese sind für technische Anwendungen, speziell im Hinblick auf elektronische Bauelemente, allerdings weniger interessant, da hier immer eine Kombination von Leitern, Halbleitern und Isolatoren gebraucht wird. Die Saarbrücker Forscher arbeiten nun daran, Graphen auf Isolatoren oder Halbleitern wachsen zu lassen. Wenn das gelingen sollte, wäre eine Revolution der IT-Technologie greifbar.

Originalveröffentlichung: Frank Müller, Hermann Sachdev, Stefan Hüfner et al.; "How does Graphene grow? Easy access to well-ordered graphene films"; Small 2009

Mehr über Uni des Saarlandes
Mehr über Uni Augsburg
  • News

    Klebstoffe aus Restholz, Biosprit aus Stroh

    Abfälle aus Land- und Forstwirtschaft könnten in Zukunft als Basis für umweltfreundliche Baumaterialien, Dämmschäume oder Treibstoffe dienen. Ein EU-Projekt unter Beteiligung der Universität Augsburg hat in den vergangenen 4,5 Jahren das Potenzial solcher Produkte ausgelotet. Die Ergebnisse ... mehr

    Ungewöhnliche Verbindung macht Hoffnung auf neue Katalysatoren

    Festkörperchemiker der Universität Augsburg haben ein neuartiges Material synthetisiert, das ungewöhnliche Eigenschaften aufweist. Möglicherweise ebnet es den Weg zu neuen Katalysatoren für Reaktionen, die bislang nur unter hohem Energieeinsatz möglich sind, etwa zur Produktion von Düngemit ... mehr

    Neue Methode zur temperaturabhängigen Erzeugung von Terahertz-Strahlung

    Physiker der Universitäten Augsburg und Münster haben einen neuartigen Emitter zur Erzeugung von Terahertz-Strahlung vorgestellt, der sich durch Variation der Temperatur an- oder abschalten lässt. In Zukunft könnte sie möglicherweise den Bau von Strahlenquellen höherer Intensität ermögliche ... mehr

Mehr über University of Nottingham