Meine Merkliste
my.chemie.de  
Login  

Akkordarbeit am Nano-Fließband

Elektrische Felder steuern molekulare Maschinen 100.000-mal schneller als herkömmliche Methoden

22.01.2018

Enzo Kopperger / TUM

Elektrische Felder steuern den rotierenden Nano-Kran – 100.000 mal schneller als bisherige Methoden.

Enzo Kopperger / TUM

Rotation des Arms zwischen zwei Andock-Punkten (rot und blau).

Wissenschaftler der Technischen Universität München (TUM) haben eine neue, elektrische Antriebstechnik für Nano-Roboter entwickelt. Mit dieser lassen sich molekulare Maschinen Hunderttausendmal schneller bewegen als mit den bisher genutzten biochemischen Prozessen. Damit werden Nano-Roboter schnell genug für die Fließbandarbeit in molekularen Fabriken.

Auf, ab, auf, ab. Im Gleichtakt schwingen die Lichtpunkte hin und her. Erzeugt werden sie von leuchtenden Molekülen, die an der Spitze winziger Roboterarme fixiert sind. Am Monitor des Fluoreszenzmikroskops verfolgt Prof. Friedrich Simmel die Bewegung der Nano-Maschinen. Ein Mausklick genügt, um die Lichtpunkte in eine andere Richtung wandern zu lassen.

„Durch Anlegen elektrischer Felder können wir die Arme beliebig in der Ebene drehen,“ erklärt der Inhaber des Lehrstuhls für Physik Synthetischer Biologischer Systeme an der TU München. Seinem Team ist es erstmals gelungen Nano-Roboter elektrisch zu steuern und auch gleich einen Rekord aufzustellen: Die neue Antriebstechnik ist 100.000-mal schneller ist als alle bisherigen Methoden.

DNA-Origami-Roboter für die Fertigung der Zukunft

Weltweit arbeiten Wissenschaftler an neuen Technologien für die Nano-Fabriken der Zukunft. In denen sollen eines Tages wie am Fließband biochemische Proben analysiert oder medizinische Wirkstoffe hergestellt werden. Die dafür notwendigen Miniatur-Maschinen lassen sich bereits kostengünstig mit Hilfe der DNA-Origami-Technik herstellen.

Dass diese molekularen Maschinen nicht längst im großen Maßstab genutzt werden, liegt daran, dass sie bisher nur sehr langsam arbeiten. Durch Zugabe von Enzymen, DNA-Strängen oder mit Hilfe von Licht werden die Bausteine aktiviert und können bestimmte Aufgaben ausführen, beispielsweise Moleküle aufnehmen und transportieren.

Für die Ausführung solcher Aktionen benötigen herkömmliche Nano-Roboter allerdings Minuten, manchmal auch Stunden. Eine effiziente molekulare Fließbandarbeit lässt sich mit diesen Methoden kaum realisieren.

Elektronik macht schnell

„Um nanotechnische Produktionslinien aufzubauen, braucht man eine andere Antriebstechnik. Unsere Idee war es, auf das biochemische Schalten der Nano-Maschinen völlig zu verzichten und stattdessen die Wechselwirkung der DNA-Strukturen mit elektrischen Feldern zu nutzen“, erklärt der TUM-Forscher Simmel, der auch Co-Koordinator des Exzellenz-Clusters Nanosystems Initiative München (NIM) ist.

Das Prinzip hinter der neuen Antriebstechnik ist einfach: DNA-Moleküle enthalten negative Ladungen. Durch Anlegen elektrischer Felder lassen sich die Biomoleküle daher bewegen. Theoretisch ist es damit möglich, Nano-Roboter aus DNA mit Hilfe von Stromimpulsen zu steuern.

Roboterbewegung unterm Mikroskop

Um herauszufinden, ob und wie schnell sich die Roboterarme parallel zu einem elektrischen Feld ausrichten, fixierten die Forscher Nano-Roboterarme auf einem Glasträger und platzierten diesen in einen speziell dafür entwickelten Probenhalter mit elektrischen Kontakten.

Jede einzelne der von Erstautor Enzo Kopperger gefertigten Miniatur-Maschinen besteht aus einer starren Grundplatte von 55 mal 55 Nanometern, auf der sich, verbunden durch ein flexibles Gelenk aus ungepaarten Basen, ein 400 Nanometer langer Arm befindet. Der Aufbau sorgt dafür, dass sich der Arm in der Horizontalen beliebig drehen kann.

In Kooperation mit Fluoreszenz-Spezialisten um Prof. Don Lamb von der Ludwig-Maximilians-Universität LMU markierten die Forscher die Spitzen der Roboterarme mit Farbstoffmolekülen. Deren Bewegung verfolgten sie mit einem Fluoreszenz-Mikroskop. Computergesteuert änderten sie die Richtung des elektrischen Feldes. Auf diese Weise konnten die Forscher die Orientierung der Arme beliebig einstellen und Bewegungsvorgänge vorgegeben.

„Das Experiment hat gezeigt, dass sich molekulare Maschinen elektrisch bewegen und folglich auch antreiben lassen“, sagt Simmel. „Dank der elektronischen Steuerung können wir Bewegungen im Millisekunden-Takt ausführen und sind damit 100.000 Mal schneller als bisherige biochemische Antriebe.“

Auf dem Weg zur Nano-Fabrik

Die neue Steuerungstechnik eignet sich nicht nur, um Farbstoffe oder Nano-Partikel hin- und herzubewegen. Die Arme der Miniatur-Roboter können auch Kräfte auf Moleküle ausüben. Diese Wechselwirkung lässt sich beispielsweise für die Diagnostik und für die Pharmaentwicklung nutzen, betont Simmel: „Nano-Roboter sind klein und preiswert. Millionen von ihnen könnten gleichzeitig arbeiten, um in einer Probe nach bestimmten Stoffen zu suchen oder um Schritt für Schritt – wie am Fließband – komplizierte Moleküle zu synthetisieren.“

Fakten, Hintergründe, Dossiers
  • Nanoroboter
  • molekulare Maschinen
  • molekulare Fabriken
Mehr über TU München
  • News

    TU München, Oerlikon, GE Additive und Linde gründen Cluster für Additive Fertigung in Bayern

    Die Technische Universität München (TUM), Oerlikon, GE Additive und Linde gründen gemeinsam ein Cluster für Additive Fertigung. Dieses Cluster ist ein Zusammenschluss von Unternehmen und Organisationen mit dem Ziel, an einem einzigen Standort Additive Fertigungstechnologien zu erforschen un ... mehr

    Licht in der Nanowelt

    Einem internationalen Team um Alexander Holleitner und Jonathan Finley, Physiker an der Technischen Universität München (TUM), ist es gelungen, Lichtquellen in atomar dünnen Materialschichten auf wenige Nanometer genau zu platzieren. Die neue Methode ermöglicht eine Vielzahl von Anwendungen ... mehr

    Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie

    Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und der amerikanischen Harvard University nutzt nun erfolgreich künstli ... mehr

  • Videos

    Scientists pair up two stars from the world of chemistry

    Many scientists consider graphene to be a wonder material. Now, a team of researchers at the Technical University of Munich (TUM) has succeeded in linking graphene with another important chemical group, the porphyrins. These new hybrid structures could also be used in the field of molecular ... mehr

  • q&more Artikel

    Ernährung, Darmflora und Lipidstoffwechsel in der Leber

    Die Natur bringt eine enorme Vielfalt an Lipidmolekülen hervor, die über unterschiedliche Stoffwechselwege synthetisiert werden. Die Fettsäuren sind Bausteine verschiedener Lipide, einschließlich Zellmembranlipiden wie die Phospholipide und Triacylglyceride, die auch die Hauptkomponenten de ... mehr

    Translation

    Die Struktur der chemischen und pharmazeutischen Großindustrie hat sich gewandelt. Traditionelle Zentralforschungsabteilungen, in denen grundlagennahe Wissenschaft ­betrieben wurde, sind ökonomischen Renditebetrachtungen zum Opfer gefallen. mehr

    Molekülgenaue ­Detektivarbeit

    Die drei Ausdrücke im Titel ebenso wie „Known Unknowns“ und „Unknown Unknowns“ sind eingedeutschte Schlagwörter, die derzeit die analytische Wasserszene durcheinanderwirbeln. Die Vorgehensweise in der Nutzung eben dieser Technologien ist jedoch häufig noch nicht ­einheitlich. mehr

  • Autoren

    Dr. Josef Ecker

    Josef Ecker, Jahrgang 1978, studierte Biologie an der Universität in Regensburg. Er promovierte 2007 und forschte danach als Postdoc am Uniklinikum in Regensburg am Institut für Klinische Chemie. Nach einer anschließenden mehrjährigen Tätigkeit in der Industrie im Bereich der Geschäftsführu ... mehr

    Prof. Dr. Arne Skerra

    Arne Skerra, Jg. 1961, studierte Chemie an der TU Darmstadt und wurde 1989 zum Dr. rer. nat. am GenZentrum der LMU München promoviert. Nach Stationen am MRC Laboratory of Molecular Biology in Cambridge, Großbritannien und am Max-Planck-Institut für Bio­physik in Frankfurt/M. wurde er 2004 P ... mehr

    Dr. Thomas Letzel

    Thomas Letzel, geb. 1970, studierte Chemie (1992–1998) an der TU München sowie der LMU München und promovierte 2001 mit einem umweltanalytischen Thema an der TU München und absolvierte im Anschluss einen zweijährigen Postdoc-Aufenthalt an der Vrijen Universiteit Amsterdam. 2009 habilitierte ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.