Meine Merkliste
my.chemie.de  
Login  

Laborwaagen: gewohnt präzise mit einfacherer Technik

PTB-Wägezelle macht ein bekanntes Prinzip auch für Präzisionswägungen verfügbar

20.04.2010

Es ist ein Aufstieg in die nächste Liga: Wägezellen, die in vielen Alltags-Waagen die Aufgabe haben, die Masse zu erfassen und in ein elektrisches Signal umzuwandeln, können jetzt, in etwas anderer Form hergestellt, deutlich genauer messen. Damit sind sie auch für Laborwaagen geeignet, die somit in Zukunft mit größeren Nennlastbereichen hergestellt werden könnten. Der in der Physikalisch-Technischen Bundesanstalt (PTB) hergestellte Prototyp einer neuen Wägezelle aus einkristallinem Silicium (statt wie bei konventionellen Wägezellen aus Metall) und mit aufgesputterten (statt aufgeklebten) Dehnungsmessstreifen wartet jetzt gewissermaßen auf seinen Sprung in die industrielle Produktion.

Waagen gehören zu den wirtschaftlich wichtigsten Messgeräten. In Deutschland liegt der Umsatz der Wägetechnik bei ca. einer Milliarde Euro pro Jahr. Ein Großteil dieses Jahresumsatzes wird mit konventionellen Wägezellen für geringe bis mittlere Präzision erreicht. Sie bestehen aus metallischen Federkörpern mit aufgeklebten Dehnungsmessstreifen.

Auf diesem Prinzip beruht auch der von der PTB weiterentwickelte Sensor. Doch statt aus Metall besteht sein Federkörper aus Silicium. Da sich einkristallines Silicium bei Belastung ideal elastisch verformt, sind Zeitabhängigkeiten und Hysterese eines solchen Federkörpers vernachlässigbar. Die Kennlinien der Silicium-Wägezellen zeigen im Vergleich zu denen konventioneller Wägezellen bei Hysterese, Nullpunktverhalten und Reproduzierbarkeit der Messwerte jeweils um mehr als eine Größenordnung bessere Werte. Damit können digitale Kompensationsverfahren effektiv eingesetzt werden, um Temperaturverhalten und Linearität zu verbessern.

Zur Bewertung des Einsatzbereiches der neuen Wägezellen wurden die Messdaten in Anlehnung an die internationale OIML-Empfehlung R 60 zur Prüfung von Wägezellen für eichpflichtige Anwendungen ausgewertet. Die anhand der Kriech- und Richtigkeitsprüfung bewerteten Silicium-Wägezellen erreichen bis zu 50.000 Teilungsschritte für eichfähige Anwendungen und sind somit auch für präzise Wägungen, etwa bei Laborwaagen, geeignet.

Originalveröffentlichungen: Mäuselein, S.; Mack, O.; Schwartz, R.; "Investigations into the use of single-crystalline silicon as mechanical spring in load cells"; Measurement, vol. 42, nº. 6, pp. 871-877, 2009

Mäuselein, S.; Mack, O.; Schwartz, R.; Jäger, G.; "Investigations of new silicon load cells with thin-film strain gauges. XIX IMEKO World Congress: Fundamental and Applied Metrology"; Lisbon, September 06-11, 2009. Proceedings (2009)

Fakten, Hintergründe, Dossiers
Mehr über Physikalisch-Technische Bundesanstalt
  • News

    Die Grenzen der Messgenauigkeit verschieben

    Seit Jahrhunderten erweitert die Menschheit ihr Verständnis der Welt durch immer genauere Messungen von Licht und Materie. Heute sind mit Quantensensoren extreme Messgenauigkeiten möglich. Ein Beispiel ist die Entwicklung von Atomuhren, die in 30 Milliarden Jahren lediglich eine Sekunde fal ... mehr

    Neue Definition für das Kilogramm in Kraft

    (dpa) Das Ur-Kilogramm als Maß aller Dinge hat ausgedient. Seit Montag gilt eine neue Definition der Gewichtseinheit. Statt über den berühmten Klotz, der seit 130 Jahren in einem Pariser Tresor lagert, wird ein Kilogramm nun mit Hilfe einer bestimmten Anzahl von Silizium-Atomen und weiterer ... mehr

    Das „neue Kelvin“ bekommt in Berlin-Charlottenburg eine Heimat

    Walther Meißner, der Pionier der Tieftemperaturforschung, ist der Namenspatron des neuen Gebäudes, das die Physikalisch-Technische Bundesanstalt (PTB) auf ihrem historischen Gelände in Berlin-Charlottenburg bekommt. Es wird seit dem Jahr 2017 vom Bundesamt für Bauwesen und Raumordnung (BBR) ... mehr

  • q&more Artikel

    Naturkonstanten als Hauptdarsteller

    Der 20. Mai 2019 ist ein besonderer Tag. Denn ab diesem Tag sind die gewohnten Definitionen dessen, was ein Kilogramm und ein Mol, ein Ampere und ein Kelvin sein sollen, Geschichte. Die Zukunft im Internationalen Einheitensystem sieht vielmehr so aus, dass von nun an Naturkonstanten die Hau ... mehr

    Die Messung der Avogadro-Konstante

    Seit dem 20. Mai 2019 ist die Masseneinheit Kilogramm nicht mehr durch den Internationalen Kilogramm-Prototypen definiert, sondern durch den Zahlenwert des Planck’schen Wirkungsquantums, der wichtigsten Fundamentalkonstante aus der Quantenphysik. Voraussetzung für diese Definition war die M ... mehr

    Die beste Messung

    Seit über 30 Jahren sucht man nach Wegen, das Kilogramm über eine atomare Konstante oder eine physikalische Fundamentalkonstante zu definieren. Zwei Messmethoden sind inzwischen so weit fortge­schritten, dass eine Neudefinition in den kommenden Jahren wahrscheinlich ist: das Wattwaagen-Expe ... mehr

  • Autoren

    Dr. Jens Simon

    Jens Simon, Jahrgang 1962, hat zwei akademische Wege mit Stationen in Braunschweig, Jülich und Köln verfolgt. Der eine Weg führte zu einer Promotion an der Technischen Universität Braunschweig in germanistischer Linguistik über die Sprache Arno Schmidts. Der andere Weg führte zu einer Promo ... mehr

    Prof. Dr. Joachim H. Ullrich

    Joachim Ullrich, Jahrgang 1956, studierte Geophysik und Physik an der Universität Frankfurt, wo er nach dem Diplom 1983 auch 1987 promovierte und sich 1994 habilitierte. Von 1989 bis 1997 war er als wissenschaftlicher Angestellter an der Gesellschaft für Schwerionenforschung in Darmstadt tä ... mehr

    Dr. Horst Bettin

    Horst Bettin, Jahrgang 1955, studierte Physik an der Technischen Universität Braunschweig und promovierte dort am Institut für Halbleiterphysik und Optik. Im Jahr 1990 trat er in die Physikalisch-Technische Bundesanstalt ein und forschte hauptsächlich auf dem Gebiet der Dichtemessungen. Auß ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.