Eine außergewöhnliche Kobaltverbindung

Interessant für Anwendungen im Bereich der Batterie- oder Akkuherstellung

15.06.2020 - Deutschland

Auf der Suche nach kleinen, aber stabilen Kobaltverbindungen hat ein internationales Team einen für die Materialforschung spannenden Komplex entdeckt, wie es ihn seit fast 50 Jahren nicht mehr gab.

© RUB, Marquard

David Zanders und Anjana Devi (rechts) freuen sich über die außergewöhnliche Entdeckung.

Eine neuartige, sehr vielseitige Kobaltverbindung hat ein Forschungsteam der Ruhr-Universität Bochum (RUB) und der Carleton University in Ottawa hergestellt. Die Moleküle der Verbindung sind stabil, räumlich sehr kompakt und haben ein geringes Molekulargewicht, sodass sie für die Herstellung von Dünnschichten verdampft werden können. Das macht sie interessant für Anwendungen zum Beispiel im Bereich der Batterie- oder Akkuherstellung. Aufgrund ihrer besonderen Geometrie verfügt die Verbindung zudem über eine sehr außergewöhnliche Spinkonfiguration von ½. Eine solche Kobaltverbindung war zuletzt 1972 beschrieben worden.

Die Geometrie macht den Unterschied

„Die wenigen bekannten Kobalt(IV)-Verbindungen sind bei hohen Temperaturen instabil und sehr empfindlich gegenüber Luft und Feuchtigkeit. Das erschwert ihre Verwendung als Studiensysteme oder in der Materialsynthese“, erläutert Erstautor David Zanders von der Bochumer Arbeitsgruppe Chemie Anorganischer Materialien von Prof. Dr. Anjana Devi. Im Rahmen seiner binationalen Promotion, die über einen Cotutelle-Vertrag zwischen der RUB und der Carleton University besiegelt wurde, entdeckte er mit seinen kanadischen Kollegen Prof. Dr. Seán Barry und Goran Bačić eine Kobalt(IV)-Verbindung, die über eine ungewöhnliche Stabilität verfügt.

Mit theoretischen Studien konnte das Team darlegen, dass eine nahezu rechtwinklige Einbettung des zentralen Kobaltatoms in ein tetraedrisch angeordnetes Umfeld aus zusammenhängenden Atomen – sogenannten Liganden – der Schlüssel zur Stabilisierung der Verbindung ist. Diese besondere geometrische Ordnung innerhalb der Moleküle der neuen Verbindung erzwingt außerdem den außergewöhnlichen Elektronenspin des zentralen Kobaltatoms. „Unter diesen besonderen Umständen kann der Spin nur ½ sein“, verdeutlicht David Zanders. Eine Kobaltverbindung mit diesem Spinzustand und ähnlicher Geometrie wurde seit fast 50 Jahren nicht mehr beschrieben.

Mit einer Reihe von Experimenten zeigte das Team darüber hinaus, dass die Verbindung – untypisch für Kobalt(IV) – eine hohe Flüchtigkeit besitzt und bei Temperaturen bis 200 Grad Celsius nahezu ohne Zersetzung verdampft werden kann.

Ein aussichtsreicher Kandidat für dünnste Schichten

Einzelne Moleküle der Verbindung docken nach der Verdampfung auf eine kontrollierbare Art auf Oberflächen an. „Damit ist das wichtigste Kriterium einer potenziellen Vorstufe für die Atomlagenabscheidung erfüllt“, stellt Seán Barry fest. „Dieses Verfahren wird in der Industrie bei der Materialherstellung immer wichtiger, und unsere Kobalt(IV)-Verbindung ist die erste ihrer Art, die dafür geeignet ist.“ „Da den hochvalenten Oxiden und Sulfiden des Kobalts beispielsweise in der modernen Batterie- und Mikroelektronik großes Potenzial zugeschrieben wird, ist unsere Entdeckung umso reizvoller“, ergänzt Anjana Devi. Die Elektroden in wiederaufladbaren Batterien verlieren mit der zunehmenden Anzahl an Lade- und Entladevorgängen an Stabilität, weswegen die Forschung nach stabileren und somit langlebigeren Materialien dafür sucht. Auch die Verwendung neuer Methoden zur ihrer Herstellung steht im Fokus.

„Diese binationale Zusammenarbeit beruht auf der Eigeninitiative von David Zanders und hat Einfallsreichtum sowie sich ergänzende Expertise der Chemiker aus Bochum und Ottawa kombiniert. Das hat etwas Unerwartetes hervorgebracht und war der Schlüssel zum Erfolg“, fasst Anjana Devi zusammen.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!