11.08.2020 - Philipps-Universität Marburg

Darauf brennt die Fachwelt schon lange: Chemiker stellen neuen Kernbrennstoff her

Die neue Verbindung Uran-Dinitrid könnte einstmals in Kernreaktoren zum Einsatz kommen

Im Kern etwas Neues: Marburger Chemiker haben erstmals eine molekulare Form der Uran-Stickstoff-Verbindung Uran-Dinitrid hergestellt, die nicht in eine andere Substanz zur Stabilisierung eingebettet ist. Das Molekül könnte sich als Brennstoff für Kernkraftwerke eignen. Die Wissenschaftler um Professor Dr. Florian Kraus von der Philipps-Universität berichten über ihre Entdeckung im Wissenschaftsmagazin „Nature Chemistry“.

Es sieht so simpel aus – Uran-Dinitrid enthält zwei Stickstoffatome, die beiderseits mittels Dreifachbindungen an ein zentrales Uranatom gebunden sind: N≡U≡N. Nun, so einfach ist es nicht, wie Florian Kraus zu berichten weiß: „Das UN2-Molekül ist eine Spezies, der Uranchemiker schon seit vielen Jahrzehnten hinterherjagen.“ Dem Marburger Hochschullehrer ist es mit seiner Arbeitsgruppe jetzt endlich gelungen, die Verbindung herzustellen.

Das Team präsentiert drei Komplexe mit UN2, in denen die Verbindung in linearer Anordnung vorliegt. Die Wissenschaftler charakterisierten das Molekül mit Röntgenkristallographie und verschiedenen spektroskopischen Verfahren sowie quantenchemischen Berechnungen. Diese Analysen bestätigen, dass Dreifachbindungen zwischen den Atomen bestehen. „Das Molekül entspricht in seinem Aufbau dem Uranyl-Kation aus Uran und Sauerstoff – das ist die häufigste Form von Uranverbindungen“, erklärt Stefan Rudel, der seine Doktorarbeit bei Kraus anfertigt und als Erstautor des Fachaufsatzes firmiert.

„Manche Fachleute träumen davon, auf der Basis von UN2 einen neuen Kernbrennstoff zu entwickeln“, sagt Kraus. Die nächste Generation von Reaktorsystemen könnte auf solchen Brennstoffen beruhen. „Unsere Experimente mit UN2 zeigen: Verwendet man flüssiges Ammoniak als Reaktionspartner und zugleich auch als Lösungsmittel, kommt es nicht zu unerwünschten Reaktionen“, führt der Chemiker aus. „Zudem ist Ammoniak als großindustriell hergestellter Stoff billig und nahezu unbegrenzt verfügbar – diese Umstände sind besonders vorteilhaft, wenn man keramische Kernbrennstoffe synthetisieren möchte.“

Fakten, Hintergründe, Dossiers
  • Uran-Dinitrid
  • Uran
  • Kernbrennstoffe
  • Röntgenkristallografie
Mehr über Universität Marburg
  • News

    Radioaktive Moleküle eignen sich als Mini-Labore

    Radioaktive Moleküle eignen sich als Miniatur-Laboratorien, mit denen sich grundlegende Eigenschaften von Elementarteilchen und Atomkernen studieren lassen – das ist das Ergebnis eines Experiments, über das ein internationales Forschungskonsortium in der aktuellen Ausgabe des Wissenschaftsm ... mehr

    Leistungsfähigere Batteriematerialien: Lithium kommt in Sicht

    Eine Kombination mikroskopischer Verfahren rückt leistungsfähigere Batteriematerialien in greifbare Nähe. Das zeigt eine mittelhessische Forschungsgruppe in der Fachzeitschrift „Advanced Energy Materials“. Das Team schaffte es, zu zeigen, wie die Verbindung Lithium-Nickel-Oxid aufgebaut ist ... mehr

    Meeresalgen verdauen Plastik mittels Bakterienenzym

    Im Ozean wird aufgeräumt: Ein Bakterienenzym versetzt Mikroalgen in die Lage, Plastikmüll im Salzwasser abzubauen. Das haben Marburger Zellbiologen herausgefunden, indem sie eine Kieselalge mit dem Enzym PETase versahen; dieses stammt aus einem Bakterium, das die PETase zum Abbau von Kunsts ... mehr

  • White Paper

    Leitfähigkeitsmessungen mit „Plasma-Elektrode“

    Neues Verfahren erlaubt die Widerstandsmessung an dünnen Schichten mit weniger Messkontakten, als sonst üblich, sowie aus größerer Distanz mehr

  • q&more Artikel

    Von der RNA- zur Protein-Welt

    Die Evolution des tRNA-Prozessierungsenzyms (RNase P) hat in den verschiedenen ­Bereichen des Lebens zu sehr unterschiedlichen architektonischen Lösungen geführt. So ist die bakterielle RNase P grundsätzlich anders aufgebaut als die menschlichen RNase P-Enzyme in Zellkern und Mitochondrien. ... mehr

  • Autoren

    Dennis Walczyk

    Dennis Walczyk, geb. 1984, studierte Chemie an der Philipps-Universität Marburg. Seit 2012 ist er wissenschaftlicher Mitarbeiter und Doktorand in der Arbeitsgruppe von Prof. Dr. Hartmann am Institut für Pharmazeutische Chemie der Universität Marburg und beschäftigt sich dort u.a. mit der En ... mehr

    Prof. Dr. Roland K. Hartmann

    Roland K. Hartmann, geb. 1956, ist Professor der Pharmazeutischen Chemie an der Philipps-Universität Marburg. Er studierte Biochemie an der Freien Universität Berlin, wo er 1988 mit dem Ernst Reuter-Preis für seine hervorragende Dissertation ausgezeichnet wurde. Seine Forschungsinteressen u ... mehr