07.04.2021 - Westfälische Wilhelms-Universität Münster (WWU)

Durchbruch bei der Herstellung dreidimensionaler Molekülstrukturen

Neue Dimensionen in der organischen Chemie durch lichtvermittelte Synthese

Ein Hauptziel der organischen und medizinischen Chemie der vergangenen Jahrzehnte ist die schnelle Synthese dreidimensionaler Moleküle für die Entwicklung neuer Medikamente. Diese Wirkstoffkandidaten weisen im Vergleich zu vorwiegend flachen Molekülstrukturen viele verbesserte Eigenschaften auf, welche sich in klinischen Studien durch eine höhere Wirksamkeit und Erfolgsrate widerspiegeln. Sie waren aber mit früheren Methoden nur sehr aufwändig oder überhaupt nicht herstellbar. Chemikern um Prof. Frank Glorius (Westfälische Wilhelms-Universität (WWU) Münster) und seine amerikanischen Kollegen Prof. M. Kevin Brown (Indiana University Bloomington) und Prof. Kendall N. Houk (University of California, Los Angeles (UCLA)) ist es jetzt gelungen, gleich mehrere Klassen an flachen stickstoffhaltigen Molekülen in die begehrten, dreidimensionalen Strukturen umzuwandeln. An mehr als 100 neuartigen Beispielen konnten sie die breite Anwendbarkeit des Verfahrens demonstrieren. Die Studienergebnisse sind nun in der Fachzeitschrift „Science“ veröffentlicht.

Lichtvermittelte Energieübertragung überwindet Energiebarriere

Eine der effizientesten Methoden für die Synthese dreidimensionaler Architekturen ist die Addition eines Moleküls an ein Ausgangsmolekül, die sogenannte Cycloaddition. Dabei bilden sich zwei neue Bindungen und ein neuer Ring zwischen den Molekülen. Für aromatische Systeme – also flache und besonders stabile Ringverbindungen aus Kohlenstoff – war diese Reaktion mit bisherigen Methoden allerdings nicht realisierbar. Die Energiebarriere, die einer solchen Cycloaddition entgegensteht, konnte auch bei starker Wärmezufuhr nicht überwunden werden. Aus diesem Grund erforschten die Autoren des „Science“-Artikels die Möglichkeit, diese Barriere durch lichtvermittelte Energieübertragung zu überwinden.

„Das Motiv, Lichtenergie zum Aufbau komplexerer, chemischer Strukturen zu nutzen, findet sich auch in der Natur wieder“, erklärt Frank Glorius. „So wie Pflanzen in der Photosynthese mithilfe von Licht Zuckermoleküle aus den einfachen Bausteinen Kohlenstoffdioxid und Wasser synthetisieren, nutzen wir die lichtvermittelte Energieübertragung, um aus flachen Grundstrukturen komplexe, dreidimensionale Zielmoleküle herzustellen.“

Neue Wirkstoffkandidaten für pharmazeutische Anwendungen?

Die Wissenschaftler weisen auf die „enormen Möglichkeiten“ der Methode hin. Die neuartigen, unkonventionellen Strukturmotive, die das Team in der „Science“-Publikation vorstellt, erweitern deutlich das Spektrum an Molekülen, auf die medizinische Chemiker auf ihrer Suche nach neuen Wirkstoffen zurückgreifen können: So seien pharmazeutisch höchst relevante, stickstoffhaltige Grundbausteine wie Chinoline, Isochinoline und Chinazoline aufgrund von Selektivitäts- und Reaktivitätsproblemen bisher weniger verwendet worden. Durch die lichtvermittelte Energieübertragung können sie nun mit einer Vielzahl an strukturell diversen Alkenen gekoppelt werden, um neuartige dreidimensionale Wirkstoffkandidaten oder deren Grundgerüst zu erhalten. Auch für die weitere Umwandlung („Transformation“) dieser synthetisierten Grundgerüste zeigten die Chemiker viele innovative Möglichkeiten. Mit ihrer Expertise ebnen sie pharmazeutischen Anwendungen den Weg. Die einfache Durchführbarkeit und die Verfügbarkeit der benötigten Startmaterialien sind dabei ausschlaggebend für die künftige Nutzung der Technologie: Die genutzten Moleküle sind günstig im Handel erhältlich oder leicht herzustellen.

„Wir hoffen, dass diese Entdeckung Impulse in der Entwicklung neuartiger medizinischer Wirkstoffe setzen kann und darüber hinaus interdisziplinär angewandt und weiterentwickelt wird“, unterstreicht Jiajia Ma. Kevin Brown ergänzt: „Unser wissenschaftlicher Durchbruch kann auch eine große Bedeutung für die Entdeckung von Pflanzenschutzwirkstoffen und darüber hinaus erhalten.“

Synergie von experimenteller und computergestützter Chemie

Eine weitere Besonderheit der Studie: Die Wissenschaftler klärten den Reaktionsmechanismus und die exakte Struktur der erstmals hergestellten Moleküle nicht nur analytisch und experimentell genau auf, sondern auch per „Computerchemie“: Kendall Houk und Shuming Chen führten eine detaillierte computergestützte Modellierung der Reaktion durch. Sie konnten zeigen, wie diese Reaktionen ablaufen und warum sie sehr selektiv sind. „Diese Studie ist ein Musterbeispiel für die Synergie der experimentellen und der computergestützten, theoretischen Chemie“, betont Shuming Chen, mittlerweile Professorin am Oberlin College in Ohio. „Unsere genaue mechanistische Aufklärung und das Verständnis der Reaktivitätskonzepte ermöglichen es Wissenschaftlern, komplementäre Methoden zu entwickeln und das Gelernte zu nutzen, um in Zukunft effizientere Synthesewege zu entwerfen,“ ergänzt Kendall Houk.

Die Geschichte hinter der Publikation

Mit der Methode der lichtvermittelten Energieübertragung hatten sowohl Jiajia Ma und Frank Glorius (WWU Münster) als auch Renyu Guo und Kevin Brown (Indiana University) unabhängig voneinander Erfolg. Durch eine Kooperation mit Kendall Houk und Shuming Chen von der UCLA erfuhren beide Forschungsgruppen von der beidseitigen Entdeckung. Die drei Gruppen entschieden sich dazu, diese gemeinsam weiterzuentwickeln, um die wissenschaftliche Gemeinschaft so schnell wie möglich an ihrem Durchbruch teilhaben zu lassen und medizinischen Chemikern die Technologie zur Entwicklung neuartiger Medikamente bereitzustellen.

Fakten, Hintergründe, Dossiers
  • Wirkstoffsuche
Mehr über WWU Münster
  • News

    Wissenschaftler verknüpfen erstmals Silizium-Atome auf Oberflächen

    in Team aus verschiedenen Arbeitsgruppen der Chemie und Physik hat es erstmals geschafft, Siliziumatome auf Oberflächen zu verknüpfen. Die Forscher erhoffen sich von Silizium-Polymeren innovative Materialeigenschaften und neue, aussichtsreiche Kandidaten für mögliche Anwendungen. Um elektro ... mehr

    Maschinelles Lernen mit Licht beschleunigen

    Im Digital-Zeitalter wachsen Datenmengen exponentiell. Besonders die Anforderungen von Muster- und Spracherkennungen oder dem autonomen Fahren übersteigen oftmals die Kapazitäten herkömmlicher Computer-Prozessoren. Wissenschaftler der Westfälischen Wilhelms-Universität Münster (WWU) entwick ... mehr

    Chemikern gelingt Synthese von Amino-Alkoholen durch Licht

    Ob in Beta-Blockern zur Behandlung von Bluthochdruck oder in Naturprodukten: Sogenannte Vizinale Amino-Alkohole sind hochwertige organische Verbindungen, die in vielen alltäglichen Produkten vorkommen. Ihre Herstellung ist jedoch schwierig. Seit langem versuchen Chemiker, effiziente Methode ... mehr

  • Forschungsinstitute

    Westfaelische Wilhelms-Universität Münster (WWU), Institut für Anorganische und Analytische Chemie

    mehr

  • q&more Artikel

    Alternativen zum Tierversuch?

    Die Aufklärung des Metabolismus potenzieller neuer Wirkstoffe ist eine der großen Herausforderungen in der pharmazeutischen Forschung und Entwicklung. Sie ist in der Regel sehr zeitaufwändig und kostenintensiv. Klassische Ansätze basieren dabei im Wesentlichen auf In-vivo-Experimenten mit L ... mehr

    Ausdrucksstark

    Biologische Moleküle an Oberflächen zu koppeln und in dieser Form für Messverfahren, zur Analytik oder in Produktionsprozessen einzusetzen, ist ein innovativer Ansatz, der in industriellen Anwendungen zunehmend Bedeutung gewinnt. In gängigen Verfahren werden Oberflächen und biologische Mole ... mehr

  • Autoren

    Dr. Martin Vogel

    Martin Vogel, geb. 1973, hat Chemie studiert und an der Universität Münster in analytischer Chemie promoviert. Nach seiner Promotion ging er für einige Jahre an die Universität Twente in Enschede (Niederlande). Seit 2006 ist er wissenschaftlicher Mitarbeiter am Institut für Anorganische und ... mehr

    Prof. Dr. Joachim Jose

    Joachim Jose, geb. 1961, studierte Biologie an der Universität Saarbrücken, wo er promovierte. Die Habilitation erfolgte am Institut für Pharma­zeutische und Medizinische Chemie der Universität des Saarlandes. Von 2004 bis 2011 war Professor für Bioanalytik (C3) an der Heinrich-Heine-Univer ... mehr

Mehr über Indiana University
  • News

    Chemiker schaffen die hellsten fluoreszierenden Materialien aller Zeiten

    Durch die Formulierung positiv geladener Fluoreszenzfarbstoffe in eine neue Klasse von Materialien mit der Bezeichnung "small-molecule ionic isolation lattices" (SMILES) kann das brillante Glühen einer Verbindung nahtlos in einen festen, kristallinen Zustand überführt werden, berichten Fors ... mehr

    Mini-Donut fängt Chlorid-Ionen

    Ionen spielen eine wichtige Rolle in der Natur, für die Funktionen unseres Körpers, für die Wissenschaft und Technik. Oft ist es notwendig, sie einzufangen, zu entfernen, zu maskieren, zu stabilisieren, oder zu transportieren. Ob im Körper oder im Labor: Im Fall positiv geladener Metallione ... mehr

Mehr über UCLA
  • News

    Effektiver Weg zur Umwandlung von CO2 in Ethylen entdeckt

    Ein Forschungsteam von Caltech und der UCLA Samueli School of Engineering hat einen vielversprechenden Weg zur effizienten Umwandlung von Kohlendioxid in Ethylen aufgezeigt - eine wichtige Chemikalie, die weltweit zur Herstellung von Kunststoffen, Lösungsmitteln, Kosmetika und anderen wicht ... mehr

    Koffein gibt Solarzellen einen Energieschub

    Wissenschaftler der University of California, Los Angeles (UCLA) und Solargiga Energy in China haben herausgefunden, dass Koffein dazu beitragen kann, eine vielversprechende Alternative zu herkömmlichen Solarzellen bei der Umwandlung von Licht in Strom effizienter zu machen. Ihre Forschung ... mehr

    Ultraleichtes Keramikmaterial, das extremen Temperaturen standhält

    Forscher und Mitarbeiter der UCLA an acht weiteren Forschungseinrichtungen haben ein extrem leichtes, sehr langlebiges Keramik-Aerogel entwickelt. Das Material könnte für Anwendungen wie die Isolierung von Raumfahrzeugen verwendet werden, da es den starken Hitzeeinflüssen und starken Temper ... mehr