14.09.2021 - Martin-Luther-Universität Halle-Wittenberg (MLU)

Terahertz-Quellen im Miniaturformat

Die Einsatzmöglichkeiten dieser Miniatur-Terahertz-Quelle reichen von der Medizin bis hin zur Materialprüfung oder der Kommunikationstechnologie

Einen neuen, einfachen Ansatz zum Erzeugen von Terahertz-Strahlen haben Forscher der Martin-Luther-Universität Halle-Wittenberg (MLU) und der Freien Universität Berlin entwickelt. Mit Hilfe starker optischer Laserpulse lassen sich elektromagnetische Terahertz-Felder direkt an der gewünschten Stelle generieren, wie das Team im Fachjournal "ACS Applied Nano Materials" berichtet. Die Einsatzmöglichkeiten von Terahertz-Strahlung sind vielfältig, sie reichen von der Werkstoffprüfung über die Kommunikations- bis hin zur Sicherheitstechnologie.

Terahertz-Strahlen liegen im elektromagnetischen Spektrum zwischen Mikrowellen und dem unsichtbaren Infrarotbereich. Sie werden zum Beispiel in der Materialforschung eingesetzt, um undurchsichtige Materialien zu untersuchen. "Terahertz-Strahlung wirkt nicht ionisierend, sie kann keine Elektronen aus Atomen entfernen und ist damit im Gegensatz zur Röntgenstrahlung gesundheitlich unbedenklich. Sie wird zum Beispiel in den Personenscannern auf Flughäfen verwendet", erklärt der Physiker Prof. Dr. Georg Woltersdorf von der MLU. Bislang lässt sich die Strahlung nur mit relativ komplexen Anlagen erzeugen, weshalb sie in der Forschung noch nicht sehr häufig zum Einsatz kommt. Gemeinsam mit Forschern der Freien Universität Berlin arbeitete das Team von Woltersdorf an einem neuen Ansatz. "Unsere Idee ist es, diesen Prozess im Miniaturformat umzusetzen und die Strahlung genau an der Stelle zu erzeugen, an der sie gebraucht wird - zum Beispiel direkt auf einem elektronischen Chip", sagt Woltersdorf.

Für ihre Experimente nutzten die Physiker einen Hochleistungslaser, der Lichtpulse mit einer Pulsdauer von etwa 250 Femtosekunden erzeugt. Eine Femtosekunde entspricht dem billiardsten Teil einer Sekunde. Diese extrem kurzen optischen Pulse wurden dann auf eine magnetische Nanostruktur gelenkt, um die darin befindlichen Elektronen anzuregen. "Dadurch lässt sich ein intensiver Spin-Strompuls erzeugen", erklärt Woltersdorf. Der Spin ist einfach gesagt das Eigendrehmoment der Elektronen und bildet die Grundlage des Magnetismus. Werden die Elektronen angeregt, fließt ein so genannter Spin-Strom durch die Grenzflächen der Nanostruktur. Dieser wird durch den sogenannten inversen Spin-Hall-Effekt zu einem Terahertz-Strompuls umgewandelt. So entsteht die gewünschte Terahertz-Strahlung auf dem Chip und kann direkt in Leiterbahnen eingekoppelt und verwendet werden. "Außerdem lässt sich die Polarität des Stroms durch ein äußeres Magnetfeld einstellen. Das war bislang nicht möglich", so Woltersdorf abschließend.

Die Anwendungsmöglichkeiten dieser Miniatur-Terahertz-Quelle reichen von der Forschung über die Hochfrequenzelektronik und die Medizin bis hin zur Materialprüfung oder der Kommunikationstechnologie.

Fakten, Hintergründe, Dossiers
  • Terahertz-Strahlung
Mehr über MLU
Mehr über Freie Universität Berlin
  • News

    Graffiti-Sprühfarben belasten Böden mit Mikroplastik

    In der Öffentlichkeit wächst das Bewusstsein für Mikroplastik als problematische Kontaminante. Bislang wurde vor allem in Gewässern die zunehmende Verunreinigung durch Kunststoffteilchen nachgewiesen. Aber auch die Bodenbelastung durch Mikroplastik rückt immer stärker in den Fokus. Ein Fors ... mehr

    Bis zu 10 Millionen Euro Förderung für Transfer im Bereich Grüne Chemie

    Ein Konsortium aus insgesamt 29 Partner*innen erhält für das Konzept GreenCHEM eine Förderung in Höhe von bis zu 10 Millionen Euro vom Bundesministerium für Bildung und Forschung, um die Hauptstadtregion zum internationalen Hotspot für chemische Deep-Tech Innovationen weiterzuentwickeln Zum ... mehr

    Durchbruch: Reaktiver Zucker nach mehr als 100 Jahren Suche nachgewiesen

    Komplexe Zucker sind allgegenwärtig. Sie machen 80% der Biomasse aus und sind essenzielle Bestandteile von lebenden Organismen. Die chemische Herstellung von komplexen Zuckern ist jedoch nach wie vor sehr schwierig. Einem Team von Forschern um Prof. Dr. Kevin Pagel von der Freien Universitä ... mehr

  • q&more Artikel

    Silber-Lipid-Zwerge

    Ca. 2–3 % der Bevölkerung leiden an Neurodermitis, eine ­Heilung gibt es nicht. Erforderlich ist eine mit starken Nebenwirkungen belastete symptomatische Therapie mit Arzneimitteln, z.B. Glucokortikoide. Mit der „Silber-Nanotechnologie“ wurde eine arznei­mittelfreie Anwendung gegen leichte ... mehr

  • Autoren

    Prof. Dr. Rainer H. Müller

    Rainer H. Müller studierte und promovierte in Pharmazie in Kiel. Anschließend arbeitete er in der Nanotechnologie 5 Jahre an den Universitäten Nottingham und Paris-Süd. Seit 1992 ist er Professor für Pharmazeutische Technologie an der Freien Universität Berlin. Prof. Müller ist Miterfinder ... mehr

    Dr. Cornelia M. Keck

    Cornelia M. Keck ist Pharmazeutin, studierte und promovierte 2006 an der Freien Universität Berlin. Rund ein Jahr arbeitete sie dabei an der Otago University in Neuseeland. Nach Industrietätigkeit als Forschungsleiterin hat sie seit 2009 eine Vertretungsprofessur für Nanotechnologie und Tox ... mehr