Vier gewinnt: Neuer Halbleiter für die Chips der Zukunft
Die Herstellung der neuen Verbindung galt lange als kaum machbar
Forschende des Forschungszentrums Jülich und des Leibniz-Instituts für innovative Mikroelektronik (IHP) haben ein Material entwickelt, das es bislang nicht gab: eine stabile Legierung aus Kohlenstoff, Silizium, Germanium und Zinn. Die neue Verbindung, abgekürzt CSiGeSn, eröffnet neue Möglichkeiten für Anwendungen an der Schnittstelle von Elektronik, Photonik und Quantentechnologie.
Das Besondere: Alle vier Elemente stammen wie Silizium aus der vierten Hauptgruppe des Periodensystems. Das macht die Legierung kompatibel mit dem Standardverfahren der Chipindustrie, dem sogenannten CMOS-Prozess – ein entscheidender Vorteil.
„Mit der Kombination dieser vier Elemente haben wir ein lang verfolgtes Ziel erreicht: den ultimativen Halbleiter auf Basis der vierten Hauptgruppe“, erklärt Dr. Dan Buca vom Forschungszentrum Jülich.
Mit der neuen Legierung lassen sich Eigenschaften so feinjustieren, dass Bauelemente möglich werden, die mit reinem Silizium nicht realisierbar wären: etwa für optische Komponenten oder in Quantenschaltungen. Die Strukturen lassen sich direkt bei der Herstellung auf dem Chip erzeugen. Die Chemie setzt dabei klare Grenzen: Nur Elemente, die zur selben Hauptgruppe gehören wie Silizium, fügen sich nahtlos ins Kristallgitter auf dem Wafer ein. Elemente anderer Gruppen stören das empfindliche Gefüge. Das zugrunde liegende Verfahren heißt Epitaxie, ein Schlüsselprozess der Halbleitertechnologie, bei dem dünne Schichten atomgenau auf einem Substrat abgeschieden werden.
Verzahnung von Optik und Elektronik
Schon zuvor war es Forscherinnen und Forscher um Dan Buca gelungen, Silizium, Germanium und Zinn zu kombinieren und daraus Transistoren, Photodetektoren, Laser und LEDs zu entwickeln – oder thermoelektrische Materialien. Die Hinzunahme von Kohlenstoff erweitert nun die Möglichkeiten, die Bandlücke – entscheidend für das elektronische und photonische Verhalten – gezielt einzustellen.
„Ein Beispiel ist ein Laser, der auch bei Raumtemperatur funktioniert. Viele optischen Anwendungen aus der Silizium-Gruppe stehen noch ganz am Anfang“, erläutert Dan Buca. „Auch für die Entwicklung von geeigneten Thermoelektrika ergeben sich neue Möglichkeiten, um Wärme in Wearables und Computerchips in elektrische Energie umzuwandeln.“
Gegensätze im Gitter vereint
Die Herstellung der neuen Verbindung galt lange als kaum machbar. Kohlenstoff ist winzig, Zinn groß und ihre Bindungskräfte sind sehr verschieden. Erst durch präzise Einstellung der Herstellungsprozesse gelang es, diese Gegensätze zu vereinen – mit einer industriellen CVD-Anlage von AIXTRON. Keine Spezialapparatur, sondern ein Gerät, wie es auch in der Chipproduktion genutzt wird.
Das Ergebnis: ein Material von hoher Qualität, gleichmäßig zusammengesetzt. Daraus entstand auch erstmals eine Leuchtdiode, die auf sogenannten Quantentopfstrukturen aus den vier Elementen aufbaut – ein wichtiger Schritt in Richtung neuer optoelektronischer Bauelemente.
„Das Material bietet eine bislang einzigartige Kombination aus abstimmbaren optischen Eigenschaften und Silizium-Kompatibilität“, sagt Prof. Dr. Giovanni Capellini vom IHP, der seit über 10 Jahren mit Dan Buca zusammenarbeitet, um die Anwendungspotenziale neuer Gruppe-IV-Halbleiter zu erschließen. „Damit schaffen wir die Grundlage für skalierbare photonische, thermoelektrische und quantentechnische Bauelemente.“ Die Ergebnisse wurden in der Fachzeitschrift Advanced Materials veröffentlicht.
Originalveröffentlichung
Omar Concepción, Ambrishkumar J. Devaiya, Marvin H. Zoellner, Markus A. Schubert, Florian Bärwolf, Lukas Seidel, Vincent Reboud, Andreas T. Tiedemann, Jin‐Hee Bae, Alexei Tchelnokov, Qing‐Tai Zhao, Christopher A. Broderick, Michael Oehme, Giovanni Capellini, Detlev Grützmacher, Dan Buca; "Adaptive Epitaxy of C‐Si‐Ge‐Sn: Customizable Bulk and Quantum Structures"; Advanced Materials, 2025-6-11
Originalveröffentlichung
Omar Concepción, Ambrishkumar J. Devaiya, Marvin H. Zoellner, Markus A. Schubert, Florian Bärwolf, Lukas Seidel, Vincent Reboud, Andreas T. Tiedemann, Jin‐Hee Bae, Alexei Tchelnokov, Qing‐Tai Zhao, Christopher A. Broderick, Michael Oehme, Giovanni Capellini, Detlev Grützmacher, Dan Buca; "Adaptive Epitaxy of C‐Si‐Ge‐Sn: Customizable Bulk and Quantum Structures"; Advanced Materials, 2025-6-11
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.