21.09.2021 - Technische Universität Wien

Ein Sandstrahler auf atomarer Ebene

Von Halbleitern bis zum Mondgestein: Viele Materialien bearbeitet man mit Ionenstrahlen. An der TU Wien ließ sich nun erklären, wie dieser Prozess von der Rauigkeit der Oberfläche abhängt.

Wenn man eine Metalloberfläche von einer Lackschicht befreien möchte, kann man dafür einen Sandstrahler verwenden: Unzählige Sandkörner werden auf die Oberfläche geschossen, übrig bleibt sauberes Metall. Ganz ähnlich kann man sich das „Sputtern“ vorstellen – bloß viel kleiner, auf atomarer Skala. Die Oberfläche wird mit Ionen, das sind geladene Atome, bestrahlt. Dadurch lassen sich beispielsweise mikroskopisch kleine Verunreinigungen entfernen.

Wenn man es mit perfekten Oberflächen zu tun hat und alle Oberflächenatome exakt in einer glatten Ebene angeordnet sind, kann man die Auswirkungen des Ionenbeschusses recht einfach vorausberechnen. Doch in der Praxis ist das nur sehr selten der Fall. Bei komplizierten, rauen Oberflächen ist schwer zu sagen, wie viel Material beim Sputtern entfernt wird. Ein Rechenmodell der TU Wien erlaubt es nun, die Oberflächenrauigkeit auf einfache Weise zu charakterisieren und so den Sputterprozess auch bei komplizierteren Proben korrekt zu beschreiben.

Abtragen oder Auftragen dünner Schichten

„Das Zerstäuben von Oberflächen durch Ionenbeschuss ist eine sehr beliebte und vielseitig einsetzbare Technik“, sagt Prof. Friedrich Aumayr vom Institut für Angewandte Physik der TU Wien, öffnet eine externe URL in einem neuen Fenster. „Einerseits kann man damit Material sehr präzise abtragen, etwa in der Halbleitertechnik, um perfekt saubere Oberflächen zu erzeugen. Andererseits kann man damit aber auch ein beliebiges Material gezielt verdampfen, das sich danach dann auf einer anderen Oberfläche niederschlagen soll, etwa um superentspiegelte Brillengläser oder Hartstoffschichten auf Spezialwerkzeugen herzustellen.“ Um dabei die richtige Materialmenge zu verwenden, muss man den Sputterprozess sehr genau verstehen.

Ähnliches gilt für die Kernfusionsforschung: Auf der Suche nach extrem widerstandsfähigen Materialien für die Innenwand eines zukünftigen Fusionsreaktors muss man berechnen können, wie viel Material durch den ständigen Beschuss mit energiereichen Ionen aus der Reaktorkammer abgetragen wird. Dies lieferte auch die ursprüngliche Motivation für diese Studie, welche durch das europäische Fusionsforschungsprogramm EUROfusion, öffnet eine externe URL in einem neuen Fenster finanziert wurde und an der auch Kollegen der Universität Uppsala, des Helmholtzzentrums in Dresden und des Max Planck Instituts für Plasmaphysik in Greifswald beteiligt waren. Auch in der Astrophysik beschäftigt man sich mit Gesteinsoberflächen, die von den geladenen Teilchen des Sonnenwindes bombardiert und durch Sputterprozesse erodiert und dadurch verändert werden, etwa auf den Mond oder auf dem Planeten Merkur.

Auf den Winkel kommt es an

„Die Materialmenge, die durch den Ionenbeschuss aus der Probenoberfläche herausgeschlagen wird, hängt neben der Projektilenergie im Wesentlichen von zwei Dingen ab: Vom Winkel, in dem die Ionen auf die Oberfläche treffen, und von der Rauigkeit der Oberfläche“, sagt Christian Cupak, der Erstautor der aktuellen Studie. „Wir haben nach einer Möglichkeit gesucht, die Rauigkeit der Oberfläche so zu charakterisieren, dass man daraus genau ableiten kann, wie viel Material beim Sputtern entfernt wird.“ 

Die Rauigkeit der Oberfläche ändert den lokalen Einschlagwinkel der Teilchen, außerdem kommt es zu Abschattungseffekten: Manche Bereiche der Oberfläche werden überhaupt nicht von Ionen getroffen. Zusätzlich kann es passieren, dass sich das abgetragene Material an bestimmten Stellen erneut anlagert, ähnlich wie Geröll im Gebirge. Das vermindert die Effektivität des Sputterns zusätzlich. 

Ganz unterschiedliche Oberflächenproben wurden an der TU Wien untersucht. Mit Hilfe moderner hochauflösender Mikroskopiemethoden wurde erst die Rauigkeit der Proben analysiert, danach wurden sie mit Ionen beschossen und die Ergebnisse mit den Modellrechnungen verglichen. „Am Ende gelang es uns, einen einzigen Parameter zu ermitteln, der den Sputterprozess sehr zuverlässig beschreibt“, sagt Christian Cupak. „Es handelt sich um ein Maß für die mittlere Oberflächenneigung.“ Wie hoch die einzelnen Erhebungen auf der rauen Oberfläche sind, spielt keine wesentliche Rolle. Eine Rauigkeit auf Nanometerskala hat ganz ähnliche Auswirkungen wie eine Rauigkeit in der Größenordnung von Millimetern, solange die Winkelverteilung der einzelnen Oberflächen-Stückchen in beiden Fällen dieselbe ist. „Die Frage ist nicht, wie hoch der durchschnittliche Berg auf der Oberfläche ist, sondern bloß, wie steil er ist“, erklärt Christian Cupak. „Wir konnten zeigen, dass unser Parameter das Endergebnis des Sputter-Prozesses viel besser beschreibt als andere Rauigkeits-Parameter, die man bisher verwendet hat.“

Das Forschungsteam an der TU Wien wird die neue Oberflächen-Charakterisierungsmethode nun sowohl in der Fusionsforschung als auch in astrophysikalischen Studien verwenden. In der industriellen Anwendung könnte das neue Modellierungsverfahren für mehr Zuverlässigkeit und Präzision sorgen.

Fakten, Hintergründe, Dossiers
Mehr über TU Wien
  • News

    Neue Technik für den Klimaschutz: Aus CO₂ wird Methanol

    Aus Klimaschutzgründen steht fest: Kohlendioxid darf nicht in die Atmosphäre. Dort, wo sich die Entstehung von Kohlendioxid nicht verhindern lässt, sollte es abgeschieden und in andere Stoffe umgewandelt werden. Am besten ist es freilich, wenn dadurch Substanzen entstehen, die Wert haben un ... mehr

    Licht statt Strom: Eine neue Art von „grünem Wasserstoff“

    „Grüner Wasserstoff“ wird heute meist durch Elektrolyse mit erneuerbarem Strom erzeugt. An der TU Wien wurde nun eine photokatalytische Methode entwickelt, die diesen Vorgang direkter und kontrollierbarer macht. Wasserstoff könnte ein wichtiger Teil unserer zukünftigen Energieversorgung sei ... mehr

    Energie chemisch speichern, verlustfrei monatelang lagern und im Winter damit heizen

    Energie langfristig zu speichern ist wohl das größte bisher ungelöste Problem der Energiewende. An der TU Wien wurde nun ein neuartiger chemischer Wärmespeicher erfunden, mit dem man große Energiemengen auf umweltfreundliche Weise praktisch unbegrenzt lange speichern kann. Man verwendet Wär ... mehr

  • Videos

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Wirkstoffsuche im Genom von Pilzen

    In Pilzen schlummert ein riesiges Potenzial für neue Wirkstoffe und wertvolle Substanzen, wie etwa Antibiotika, Pigmente und Rohstoffe für biologische Kunststoffe. Herkömmliche Methoden zur Entdeckung dieser Verbindungen stoßen zurzeit leider an ihre Grenzen. Neueste Entwicklungen auf den G ... mehr

    Organs-on-a-Chip

    Ziel der personalisierten Medizin oder Präzisionsmedizin ist es, den Patienten über die funktionale Krankheitsdiagnose hinaus unter bestmöglicher Einbeziehung individueller Gegebenheiten zu behandeln. Organ-on-a-Chip-Technologien gewinnen für die personalisierte Medizin sowie die pharmazeut ... mehr

  • Autoren

    Dr. Christian Derntl

    Christian Derntl, Jahrgang 1983, studierte Mikrobiologie und Immunologie an der Universität Wien mit Abschluss Diplom. Sein Doktoratsstudium im Fach Technische Chemie absolvierte er 2014 mit Auszeichnung an der Technischen Universität Wien. Dabei beschäftigte er sich mit der Regulation von ... mehr

    Sarah Spitz

    Sarah Spitz, Jahrgang 1993, studierte Biotechnologie an der Universität für Bodenkultur in Wien (BOKU) mit Abschluss Diplomingenieur. Während ihres Studiums war sie für zwei Jahre als wissenschaftliche Mitarbeiterin am Department für Biotechnologie (DBT) der BOKU angestellt. Nach einer inte ... mehr

    Prof. Dr. Peter Ertl

    Peter Ertl, Jahrgang 1970, studierte Lebensmittel- und Biotechnologie an der Universität für Bodenkultur, Wien. Im Anschluss promovierte er in Chemie an der University of Waterloo, Ontario, Kanada und verbrachte mehrere Jahre als Postdoc an der University of California, Berkeley, USA. 2003 ... mehr