29.11.2021 - Universität Bayreuth

Kohlenstoffmaterial mit einzigartiger Struktur entdeckt

“Das von uns synthetisierte Material ist ein Zwitter: Es bildet erstmals eine Brücke zwischen kristallinen und amorphen, also völlig ungeordneten Strukturen"

Forscher der Universität Bayreuth haben gemeinsam mit Partnern in China und den USA erstmals ein Kohlenstoffmaterial hergestellt, das nicht die streng geordneten Strukturen eines Kristalls aufweist, aber auch nicht amorph ist. Es handelt sich um parakristallinen Diamant mit einzigartigen optischen, mechanischen und thermophysikalischen Eigenschaften. Das Material bietet wichtige Anhaltspunkte für das Verständnis nichtkristalliner Materialien sowie für die gezielte Synthese weiterer neuer Kohlenstoffmaterialien. In “Nature” stellt das internationale Team seine Entdeckung vor.

Diamant ist ein außerordentlich hartes Material, das auf natürlichem Weg unter extrem hohen Drücken im Erdinneren entsteht. Es setzt sich aus Kohlenstoffatomen zusammen, die eine dreidimensionale kristalline Gitterstruktur bilden. Innerhalb dieser Struktur hat jedes Kohlenstoffatom vier kovalente Bindungen. Dabei verteilen sich die vier Elektronen, die an diesen Bindungen beteiligt sind, in einer charakteristischen Weise auf die Orbitale des Atoms. Daher wird der Zustand, in dem sich die Kohlenstoffatome eines Diamants befinden, auch als “sp3-Hybridisierung” bezeichnet. Diamant kommt in vielen Kristallformen vor, die bekanntesten sind der kubische Diamant (CD) und der hexagonale Diamant (HD). Die Synthese von nicht-kristallinem Diamant war jedoch bisher technisch schwierig, was das wissenschaftliche Verständnis seiner Struktur, seiner Eigenschaften und seines Synthesemechanismus einschränkte.

Eine Forschergruppe unter der Leitung von Prof. Dr. Tomo Katsura am Bayerischen Geoinstitut (BGI) der Universität Bayreuth hat nun aber kürzlich eine neue Ultrahochdrucktechnik mit Hilfe einer großvolumigen Multi-Anvil-Presse (MAP) entwickelt. Diese Technik setzten die Forscher ein, um nichtkristallinen Diamant in Millimetergröße zu synthetisieren. Bei einem Druck von 30 Gigapascal und einer Temperatur von mehr als 1.300 Grad Celsius hatten sie Erfolg: Im Zustand der sp3-Hybridisierung bildeten die Kohlenstoffatome eine großflächige nicht-kristalline Struktur, in der sich regelmäßig aufgebaute Einheiten identifizieren lassen.

“Das neue Material kann als ein parakristalliner Diamant beschrieben werden, der sich von allen bisher bekannten strukturellen Abwandlungen von Diamant unterscheidet. Es besitzt eine nicht-amorphe Struktur, in der die Kohlenstoffatome teils in Würfeln, teils in Sechsecken, teils in unregelmäßigen Strukturen angeordnet sind. Die ungewöhnlichen physikalischen Eigenschaften des neuen Materials sind nicht richtungsabhängig und voraussichtlich geeignet, die Erforschung von Hochdruckmaterialien weiter voranzubringen”, sagt Erstautor Dr. Hu Tang vom Bayerischen Geoinstitut. “Das von uns synthetisierte Material ist ein Zwitter: Es bildet erstmals eine Brücke zwischen kristallinen und amorphen, also völlig ungeordneten Strukturen. Es wird die Materialforschung dazu anregen, gezielt nach weiteren neuen Materialien in diesem Zwischenbereich zu suchen”, sagt Prof. Dr. Tomo Katsura, Professor für geowissenschaftliche Hochdruckforschung am BGI.

Der parakristalline Diamant wurde an einer Hochdruckpresse im BGI synthetisiert. Bei der Analyse seiner Strukturen und Eigenschaften waren sowohl Experimente unter hohen Drücken und Temperaturen als auch aufwändige Computersimulationen beteiligt. Die Bayreuther Wissenschaftler haben dabei mit Forschungspartnern in China und den USA eng kooperiert, insbesondere mit Dr. Huiyang Gou am Center for High Pressure Science and Technology Advanced Research in Peking, Prof. Dr. Ming-Sheng Wang an der Xiamen-Universität, China, und Prof. Howard Sheng an der George Mason University in Fairfax.

Fakten, Hintergründe, Dossiers
Mehr über Uni Bayreuth
  • News

    Neues Verfahren ermöglicht erstmals Materialforschung im Terapascal-Bereich

    Davon konnte Jules Verne nicht einmal träumen: Ein Forschungsteam der Universität Bayreuth hat gemeinsam mit internationalen Partnern die Grenzen der Hochdruck- und Hochtemperaturforschung in kosmische Dimensionen ausgeweitet. Erstmals ist es gelungen, Materialien unter Kompressionsdrücken ... mehr

    Nanoplastikteilchen suchen Anschluss

    Weltweit besteht fast ein Drittel der Kunststoffabfälle aus Polyethylen, einem preiswerten und leicht zu verarbeitenden Kunststoff. Ein interdisziplinäres Team der Universität Bayreuth hat jetzt erstmals den fortschreitenden Abbau von Polyethylen in der Umwelt erforscht. Dieser Prozess führ ... mehr

    Atomare Terahertz-Schwingungen lösen das Rätsel ultrakurzer Solitonen-Moleküle

    Stabile Pakete von Lichtwellen – sogenannte optische Solitonen – werden in Ultrakurzpuls-Lasern als eine Kette von Lichtblitzen ausgestrahlt. Diese Solitonen verbinden sich oft zu Paaren mit sehr kurzen zeitlichen Abständen. Anhand von atomaren Schwingungen im Terahertz-Bereich haben Forsch ... mehr

  • q&more Artikel

    Authentische Lebensmittel

    Authentische Lebensmittel erfreuen sich bei Konsumenten zunehmender Beliebtheit. Ein regionales, sortenreines und/oder speziell hergestelltes Produkt ist in einem stark industrialisierten Markt in steigendem Maß ein Garant für mehr Wertschöpfung. Gerade im Premiumsegment lassen sich durch ö ... mehr

    Mehr als Honig?

    Seit Jahrtausenden ist „Honig“ ein Inbegriff für ein naturbelassenes und gesundes Lebensmittel. Dementsprechend erfreut sich Honig auch bei Konsumenten steter Beliebtheit – gerade in Zeiten, in denen biologische Lebensmittel und eine gesunde Lebensweise aktueller sind als je zuvor. mehr

    Extraportion Zink

    Mächtige Unterarme, Pfeife im Mund, Matrosenhut. In Sekundenschnelle ist die Dose Spinat geöffnet und ­geleert. Mit nun übermenschlicher Kraft geht es in die nächste Rauferei. So kennen wir Popeye, den Seemann. Das Geheimnis seiner Stärke ist der hohe Eisengehalt von Spinat. Mit dieser Vors ... mehr

  • Autoren

    Dr. Christopher Igel

    Jg. 1990, absolvierte von 2009 bis 2013 sein Bachelor-Studium in Biochemie an der Universität Bayreuth. Die Bachelorarbeit zum Thema „Honiganalytik mittels NMR“ fertigte er am Forschungszentrum BIOmac unter der Leitung von Prof. Dr. Schwarzinger an. mehr

    Wolfrat Bachert

    Jg. 1987, begann zunächst ein Studium des Maschinen­baustudium an der TU Dresden, eher er 2009 zum Studium der Biologie an die ­Universität Bayreuth wechselte, wo er 2013 am Lehrstuhl für Biochemie unter der Leitung von Prof. Dr. Wulf Blankenfeldt seine Bachelorarbeit zum Thema „Charakteri­ ... mehr

    Christopher Synatschke

    Christopher Synatschke hat an der Universität Bayreuth und der University of New South Wales, Sydney Chemie mit Schwerpunkt Polymerforschung studiert und ist seit 2009 Doktorand in der Arbeitsgruppe von Prof. Axel H. E. Müller an der Universität Bayreuth. Seine Forschungsinteressen sind die ... mehr