11.05.2022 - Max-Planck-Institut für die Physik des Lichts

Neue Methode zur Erforschung der Nanowelt

Großer Fortschritt bei der Charakterisierung von Nanopartikeln: Eine mögliche Anwendung dieser Technik könnte die Identifizierung von Krankheiten sein

Wissenschaftler des Max-Planck-Instituts für die Physik des Lichts (MPL) und des Max-Planck-Zentrums für Physik und Medizin (MPZPM) in Erlangen präsentieren einen großen Fortschritt bei der Charakterisierung von Nanopartikeln. Sie nutzten eine spezielle Mikroskopie-Methode, die auf Interferometrie basiert, um die bestehenden Instrumente zu übertreffen. Eine mögliche Anwendung dieser Technik könnte die Identifizierung von Krankheiten sein.

Nanopartikel sind überall. Sie befinden sich in unserem Körper in Form von Proteinaggregaten, Lipidbläschen oder Viren. Sie befinden sich in Form von Verunreinigungen in unserem Trinkwasser. In der Luft, die wir einatmen, sind sie als Schadstoffe enthalten. Gleichzeitig basieren viele Medikamente auf der Verabreichung von Nanopartikeln, darunter auch die Impfstoffe, die wir in letzter Zeit erhalten haben. Auch die Schnelltests für den Nachweis von SARS-Cov-2 basieren auf Nanopartikeln, um die Pandemie zu bekämpfen. Die rote Linie, die wir täglich überwachen, enthält Myriaden von Gold-Nanopartikeln, die mit Antikörpern gegen Proteine beschichtet sind, die die Infektion anzeigen.

In der Regel, bezeichnet man etwas als Nanopartikel, wenn seine Größe (Durchmesser) kleiner als ein Mikrometer (ein Tausendstel Millimeter) ist. Objekte in der Größenordnung von einem Mikrometer können noch mit einem normalen Mikroskop gemessen werden, aber Partikel, die viel kleiner sind, z. B. kleiner als 0,2 Mikrometer, lassen sich nur noch sehr schwer messen oder charakterisieren. Interessanterweise ist dies auch der Größenbereich von Viren, die bis zu 0,02 Mikrometer klein werden können.

Im Laufe der Jahre haben Wissenschaftler und Ingenieure eine Reihe von Instrumenten zur Charakterisierung von Nanopartikeln entwickelt. Im Idealfall möchte man ihre Konzentration messen, ihre Größe und Größenverteilung beurteilen und ihre Substanz bestimmen. Ein hochwertiges Beispiel ist das Elektronenmikroskop. Aber diese Technologie hat viele Schwächen. Sie ist sehr sperrig und teuer, und die Untersuchungen dauern zu lange, weil die Proben sorgfältig vorbereitet und ins Vakuum gebracht werden müssen. Und selbst dann bleibt es schwierig, die Substanz der Teilchen zu bestimmen, die man im Elektronenmikroskop sieht.

Ein schnelles, zuverlässiges, leichtes und tragbares Gerät, das in der Arztpraxis oder im Feld eingesetzt werden kann, wäre von großer Bedeutung. Einige optische Instrumente auf dem Markt bieten solche Lösungen an, aber ihre Auflösung und Präzision waren bisher unzureichend für die Untersuchung kleinerer Nanopartikel, z. B. viel kleiner als 0,1 Mikrometer (oder anders gesagt 100 nm).

Eine Gruppe von Forschern des Max-Planck-Instituts für die Physik des Lichts und des Max-Planck-Zentrums für Physik und Medizin hat nun ein neues Gerät erfunden, das einen großen Sprung bei der Charakterisierung von Nanopartikeln ermöglicht. Die Methode heißt iNTA, kurz für Interferometric Nanoparticle Tracking Analysis. Ihre Ergebnisse werden in der Mai-Ausgabe der Zeitschrift Nature Methods veröffentlicht.

Die Methode basiert auf dem interferometrischen Nachweis des Lichts, das von einzelnen Nanopartikeln gestreut wird, die in einer Flüssigkeit umherwandern. In einem solchen Medium bewegt die Wärmeenergie die Teilchen ständig in zufällige Richtungen. Es stellt sich heraus, dass der Raum, den ein Teilchen in einer bestimmten Zeit erkundet, mit seiner Größe korreliert. Mit anderen Worten: Kleine Teilchen bewegen sich "schneller" und nehmen ein größeres Volumen ein als große Teilchen. Die Gleichung, die dieses Phänomen beschreibt - die Stokes-Einstein-Relation - stammt aus dem Anfang des letzten Jahrhunderts und findet seitdem Nutzen in vielen Anwendungen. Kurz gesagt, wenn man ein Nanopartikel verfolgen und Statistiken über seine unruhige Flugbahn sammeln könnte, könnte man auf seine Größe schließen. Die Herausforderung besteht also darin, sehr schnelle Filme von winzigen vorbeiziehenden Teilchen aufzunehmen.

Wissenschaftler am MPL haben in den letzten zwei Jahrzehnten eine spezielle Mikroskopiemethode entwickelt, die als interferometrische Streuungsmikroskopie (iSCAT) bekannt ist. Diese Technik ist extrem empfindlich beim Nachweis von Nanopartikeln. Durch die Anwendung von iSCAT auf das Problem der diffundierenden Nanopartikel hat die MPL-Gruppe erkannt, dass sie die auf dem Markt vorhandenen Instrumente übertreffen kann. Die neue Technologie hat einen besonderen Vorteil bei der Entschlüsselung von Mischungen von Nanopartikeln unterschiedlicher Größe und unterschiedlicher Materialien.

Die Anwendungen der neuen Methode sind vielfältig. Ein besonders spannender Anwendungsbereich betrifft nanogroße Vehikel, die von Zellen abgesondert werden, die so genannten extrazellulären Vesikel. Diese bestehen aus einer Lipidhülle, ähnlich wie eine Nanoseifenblase. Die Hülle und die innere Flüssigkeit enthalten jedoch auch Proteine, die uns Aufschluss darüber geben, woher die Vesikel stammen, d. h. aus welchem Organ oder zellulären Prozess. Wenn die Proteinmenge und/oder die Größe der Bläschen vom Normalbereich abweicht, könnte dies auf eine Krankheit hindeuten. Deshalb ist es sehr wichtig, Wege zu finden, extrazelluläre Vesikel zu charakterisieren.

Die Forscher am MPL und MPZPM arbeiten nun an der Entwicklung eines Benchtop-Systems, mit dem Wissenschaftler weltweit von den Vorteilen der iNTA profitieren können.

Fakten, Hintergründe, Dossiers
  • Nanopartikelanalytik
  • Nanopartikelanalysatoren
  • interferometrische…
Mehr über MPI für die Physik des Lichts
  • News

    Moleküle blitzschnell beobachten

    Wer Moleküle beobachten will, muss schnell sein: Molekülschwingungen lassen sich nur in kürzesten Sekundenbruchteilen und mit sehr empfindlichen Methoden messen. Wichtig wären derartige Messungen, um die Konzentration kleinster Teilchen etwa in Blutproben oder bei der neuronalen Information ... mehr

    Gedächtniseffekt auf Einzelatom-Ebene

    Eine internationale Forschungsgruppe hat an einem künstlichen Riesenatom neue Quanteneigenschaften beobachtet. Das untersuchte Quantensystem weist offenbar ein Gedächtnis auf – eine neue Erkenntnis, die man für den Bau eines Quantencomputers nutzen könnte. Die Forschergruppe aus deutschen, ... mehr

    Wenn ein Molekül Photonen sortiert

    Fluoreszierende organische Moleküle sind allgemein als Pigmente bekannt oder finden in der Fluoreszenzmikroskopie in vielen Bereichen der Biologie Anwendung. Obwohl sie, wie jedes andere Molekül, quantenmechanische Objekte sind, die aus einer kleinen Zahl von Atomen bestehen, werden organis ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für die Physik des Lichts

    Das Max-Planck-Institut für die Physik des Lichts wurde zum 1. Januar 2009 gegründet. Das Institut baut auf die Max-Planck-Forschungsgruppe "Optik, Information und Photonik" an der Universität Erlangen-Nürnberg auf, die seit 2004 eine lange Tradition der Optik-Forschung in Erlangen intensiv ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Mikropartikel mit Gefühl

    Ein internationales Forschungsteam unter Leitung des Bremer Max-Planck-Instituts für Marine Mikrobiologie, der Universität Aarhus und des Science for Life Institute in Uppsala hat winzige Partikel entwickelt, die den Sauerstoffgehalt in ihrer Umgebung anzeigen. So schlagen sie zwei Fliegen ... mehr

    Chemisches Trio bildet Wolkenkeime

    Aerosolpartikel spielen als Kondensationskeime eine maßgebliche Rolle bei der Entstehung von Wolken. Ein internationales Forschungsteam, dem auch Forschende des Max-Planck-Instituts für Chemie und des Climate and Atmosphere Research Centers (CARE-C) am Cyprus Institute in Nikosia angehören, ... mehr

    Lachgas – alles andere als träge

    Der Ausstoß diverser Treibhausgase stellt eine globale Umweltbedrohung dar. Wissenschaftler weltweit beschäftigen sich mehr und mehr mit der Lösung dieses Problems. Während sich viele Forschungsgruppen auf den Umgang mit Kohlenstoffdioxid (C02) oder Methan (CH4) konzentrieren, hat sich jetz ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr