30.06.2022 - Max-Planck-Institut für Radioastronomie

Ein Desinfektionsmittel im Bereich des galaktischen Zentrums

Interstellarer Nachweis von Iso-Propanol in Sagittarius B2

Einer internationalen Forschergruppe unter der Leitung von Arnaud Belloche (MPIfR Bonn) ist der erstmalige Nachweis des Moleküls Iso-Propanol im gelungen, einer auf der Erde als Desinfektionsmittel verwendeten Substanz. Iso-Propanol ist das größte bisher im Weltraum entdeckte Alkoholmolekül und zeigt die zunehmende Komplexität der Mitglieder dieser so häufigen Molekülklasse im Weltraum. Möglich wurde die Entdeckung durch die Beobachtung der Sternentstehungsregion Sagittarius B2 (Sgr B2) nahe dem Zentrum unserer Milchstraße, in der bereits zahlreiche Moleküle nachgewiesen wurden. Sgr B2 ist Ziel einer umfangreichen Untersuchung seiner chemischen Zusammensetzung mit dem ALMA-Teleskop in Chile.

Die Suche nach Molekülen im Weltraum erfolgt bereits seit mehr als 50 Jahren. Bis heute konnten Astronomen 276 Moleküle im interstellaren Medium identifizieren. Die Kölner Datenbank für Molekülspektroskopie (CDMS) präsentiert spektroskopische Daten zum Nachweis dieser Moleküle, die von vielen Forschungsgruppen beigesteuert wurden, und hat in vielen Fällen zur Identifikation dieser Moleküle beigetragen.

Ziel der vorliegenden Arbeit ist es zu verstehen, wie sich organische Moleküle im interstellaren Medium bilden, insbesondere in Regionen, in denen neue Sterne geboren werden, und wie komplex diese Moleküle sein können. Eine Motivation dahinter ist, Verbindungen zur chemischen Zusammensetzung von Körpern im Sonnensystem wie Kometen herzustellen, wie sie zum Beispiel die Rosetta-Mission zum Kometen Tschurjumow-Gerassimenko vor einigen Jahren geliefert hat.

Eine besonders geeignete Sternentstehungsregion in unserer Galaxis, in der in der Vergangenheit bereits viele Moleküle nachgewiesen werden konnten, ist Sagittarius B2 (Sgr B2), ganz in der Nähe von Sgr A* dem supermassereichen Schwarzen Loch im Zentrum der Milchstraße.

„Unsere Gruppe hat vor mehr als 15 Jahren begonnen, die chemische Zusammensetzung von Sgr B2 mit dem 30-m-IRAM-Radioteleskop zu untersuchen", sagt Arnaud Belloche vom Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn, der Erstautor der Veröffentlichung zur Entdeckung von Iso-Propanol. „Diese Beobachtungen waren erfolgreich und führten insbesondere zum ersten interstellaren Nachweis einer Reihe von organischen Molekülen, neben vielen anderen Ergebnissen."

Mit dem „Atacama Large Millimeter/submillimeter Array“ (ALMA), das vor zehn Jahren den Betrieb aufnahm, wurde es möglich, über das hinauszugehen, was mit einzelnen Radioteleskopen in Richtung Sgr B2 erreicht werden konnte, und es wurde eine Langzeitstudie der chemischen Zusammensetzung von Sgr B2 mit hoher Winkelauflösung begonnen, die auch die hohe Empfindlichkeit von ALMA nutzt.

Die ALMA-Beobachtungen haben seit 2014 zur Identifizierung von drei neuen organischen Molekülen (Isopropylcyanid, N-Methylformamid, Harnstoff) geführt. Das neueste Ergebnis im Rahmen dieses ALMA-Projekts stellt nun der Nachweis von Propanol (C3H7OH) dar.

Propanol ist das größte bisher im interstellaren Raum entdeckte Alkoholmolekül. Dieses Molekül existiert in zwei Formen ("Isomeren"), je nachdem, an welches Kohlenstoffatom die funktionelle Hydroxylgruppe (OH) gebunden ist: 1) Normales Propanol, bei dem das OH an ein endständiges Kohlenstoffatom der Kette gebunden ist, und 2) Iso-Propanol, bei dem das OH an das zentrale Kohlenstoffatom der Kette gebunden ist. Beide Isomere von Propanol in Sgr B2 konnten im ALMA-Datensatz identifiziert werden. Es ist das erste Mal, dass Iso-Propanol im interstellaren Medium und normales Propanol in einer Sternentstehungsregion nachgewiesen werden konnten. Der erste interstellare Nachweis von Normal-Propanol wurde kurz vor dem ALMA-Nachweis von einer spanischen Forschergruppe mit Einzelteleskopen in einer Molekülwolke unweit von Sgr B2 erbracht. Der Nachweis von Iso-Propanol in Richtung Sgr B2 war jedoch nur mit ALMA möglich.

„Der Nachweis beider Isomere des Propanols ist von einzigartiger Aussagekraft, wenn es darum geht, den Entstehungsmechanismus der beiden Isomere zu bestimmen. Weil sie sich so ähnlich sind, verhalten sie sich auch physikalisch sehr ähnlich, was bedeutet, dass die beiden Moleküle an denselben Orten und zu denselben Zeiten vorhanden sein sollten", sagt Rob Garrod von der University of Virginia (Charlottesville/USA). „Die einzige offene Frage ist die nach den genauen Mengen, die vorhanden sind - das macht ihr interstellares Häufigkeitsverhältnis viel präziser, als es bei anderen Molekülpaaren der Fall wäre. Das bedeutet auch, dass das chemische Netzwerk sehr viel genauer abgestimmt werden kann, um die Mechanismen für ihre Entstehung zu ermitteln.“

Das ALMA-Teleskopnetzwerk war dank seiner hohen Empfindlichkeit, seiner hohen Winkelauflösung und seiner breiten Frequenzabdeckung entscheidend für den Nachweis beider Isomere von Propanol in Richtung Sgr B2. Eine Schwierigkeit bei der Identifizierung von organischen Molekülen in den Spektren von Sternentstehungsgebieten ist die Konfusion im Spektrum. Jedes Molekül sendet Strahlung bei bestimmten Frequenzen aus, seinen spektralen "Fingerabdruck", der aus Labormessungen bekannt ist.

"Je größer das Molekül ist, desto mehr Spektrallinien bei verschiedenen Frequenzen wird es emittieren. In einer Quelle wie Sgr B2 gibt es so viele Moleküle, die zur beobachteten Strahlung beitragen, dass sich ihre Spektren überschneiden und es schwierig ist, ihre Fingerabdrücke zu entwirren und sie einzeln zu identifizieren", sagt Holger Müller von der Universität Köln, wo Labormessungen insbesondere zu normalem Propanol durchgeführt wurden.

Dank der hohen Winkelauflösung von ALMA war es möglich, Teile von Sgr B2 zu isolieren, die sehr schmale Spektrallinien emittieren - fünfmal schmaler als die Linien, die mit dem 30-m-IRAM-Radioteleskop auf größeren Skalen nachgewiesen wurden! Die Schmalheit dieser Linien reduziert die Konfusion im Spektrum, und das war auch der Schlüssel zur Identifizierung der beiden Isomere von Propanol in Sgr B2. Auch die Empfindlichkeit von ALMA spielte eine wichtige Rolle: Bei einer zweimal schlechteren Empfindlichkeit wäre es nicht möglich gewesen, Propanol in den gesammelten Daten zu identifizieren.

Diese Forschung ist ein langjähriges Projekt, um die chemische Zusammensetzung in unterschiedlichen Regionen von Sgr B2 zu untersuchen, in denen neue Sterne entstehen, und so die chemischen Prozesse zu verstehen, die bei der Sternentstehung ablaufen. Das Ziel ist es, die chemische Zusammensetzung der Sternentstehungsgebiete zu bestimmen und möglicherweise neue interstellare Moleküle zu identifizieren. „Propanol steht schon lange auf unserer Liste der aufzuspürenden Moleküle, aber erst die jüngste Vergleichsarbeit im Labor zur Charakterisierung des Spektrums der Rotationsübergänge hat es uns ermöglicht, die beiden Isomere von Propanol eindeutig zu identifizieren", sagt Oliver Zingsheim, ebenfalls von der Universität Köln.

Der Nachweis eng verwandter Moleküle, die sich in ihrer Struktur leicht voneinander unterscheiden (wie normales und Iso-Propanol oder, wie bereits in der Vergangenheit, normales und Iso-Propylcyanid), und die Messung ihres Häufigkeitsverhältnisses ermöglicht es den Forschern, bestimmte Teile des chemischen Reaktionsnetzwerks zu untersuchen, das zur Produktion von Molekülen im interstellaren Medium führt.

„Es gibt noch viele unidentifizierte Linien im ALMA-Spektrum von Sgr B2 und somit noch eine Menge Arbeit, um die chemische Zusammensetzung dieser wichtigen Quelle zu entschlüsseln. In naher Zukunft wird uns die Erweiterung der ALMA-Instrumentierung auf niedrigere Frequenzen wahrscheinlich dabei helfen, die Konfusion im Spektrum noch weiter zu reduzieren und möglicherweise weitere organische Moleküle in Sgr B2 zu identifizieren", schließt Karl Menten, Direktor am MPIfR und Leiter der Forschungsabteilung Millimeter- und Submillimeterastronomie.

Fakten, Hintergründe, Dossiers
  • Isopropanol
  • Molekülspektroskopie
  • Moleküle
  • Propanol
  • Isomere
Mehr über MPI für Radioastronomie
  • News

    Erstes Molekül des Universums gefunden

    Das Heliumhydrid-Ion HeH+ war das erste Molekül, das im noch jungen Universum vor knapp 14 Milliarden Jahren entstand, als fallende Temperaturen die ersten chemischen Reaktionen der im Urknall entstandenen leichten Elemente ermöglichten. Zu dieser Zeit verbanden sich auch ionisierter Wasser ... mehr

    Alkoholtest im All

    Das Massenverhältnis von Protonen zu Elektronen gilt als Naturkonstante. Und dies zu recht, wie neueste radioastronomische Beobachtungen einer fernen Galaxie gezeigt haben. Mit dem 100-Meter-Radioteleskop in Effelsberg haben Wissenschaftler der VU-Universität Amsterdam und des Max-Planck-In ... mehr

    Die Entdeckung von Wasserstoffperoxid im Weltraum

    Zum ersten Mal konnten Moleküle von Wasserstoffperoxid im interstellaren Raum nachgewiesen werden. Einem Forschungteam von Astronomen aus Schweden und Deutschland gelang die Entdeckung in dem Sternentstehungsgebiet Rho Ophiuchi, nur 400 Lichtjahre von der Erde entfernt. Die Entdeckung bring ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Radioastronomie

    Das Max-Planck-Institut für Radioastronomie gehört zu den 80 eigenständigen Forschungsinstituten der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Hauptarbeitsgebiete sind die Radio- und Infrarot-Astronomie. Die technologischen Entwicklungen im Institut umspannen den gesamt ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Bessere Magnete für grüne Energie

    Weichmagnetische Werkstoffe sind Schlüsselmaterialien für die Energiewende. Sie werden in Elektromotoren eingesetzt, die die Energie aus nachhaltigen Quellen wie Wind und Wasser in Elektrizität umwandeln und so nutzbar machen. Allerdings sind herkömmliche Weichmagnete, die derzeit in der In ... mehr

    Von der Sonne lernen: Wendelstein 7-X sucht neue Energiequelle

    (dpa) Die Großforschungsanlage Wendelstein 7-X steht mit dem offiziellen Abschluss eines Umbaus vor einer neuen Experimentierphase. Es geht nun um den Dauerbetrieb. «Das ist die eigentliche Mission», sagte der Physiker und Projektleiter Thomas Klinger am Dienstag. «Wendelstein 7-X ist ferti ... mehr

    Hohe harmonische Schwingungen beleuchten atomare und elektronische Bewegungen in hBN

    Laserlicht kann die Eigenschaften fester Materialien radikal verändern und sie sehr schnell supraleitend oder magnetisch machen oder in andere Zustände versetzen. Das intensive Licht bewirkt diese Veränderungen innerhalb von Millionstel Milliardstel Sekunden, indem es die Atomgitterstruktur ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr