Farbspiele mit Graphen

Forschern ist es gelungen, eine Lage von Kohlenstoffatomen an einen Hohlraum für Licht zu koppeln und zum Leuchten anzuregen

22.06.2012 - Deutschland

Graphen besteht aus einer Lage von Kohlenstoffatomen, die wabenartig angeordnet sind – das besonders dünne und stabile Material birgt für Anwendungen in der Optoelektronik großes Potenzial. Forscher vom Karlsruher Institut für Technologie, der TU Darmstadt, der University of Cambridge und IBM haben nun optoelektronische Bauteile auf Basis von Graphen entwickelt. Mit ihnen können informationstechnische Systeme langfristig kleiner und leistungsfähiger werden.

KIT

Eine optische Mikrokavität besteht aus zwei halbdurchlässigen Metallspiegeln, deren Abstand voneinander die Farbe des von Graphen erzeugten Lichts bestimmt.

Graphen kommt im Alltag vor: Das Material steckt beispielsweise – in milliardenfach übereinanderstapelten Schichten – in den Minen herkömmlicher Bleistifte aus Graphit. Als einzelne, atomare Schicht ist Graphen ein außergewöhnlich stabiles Material, welches Hitze und Strom besonders gut leitet und zugleich Licht aufnehmen (absorbieren) und abgeben (emittieren) kann. Damit bietet das Material für Anwendungen in der Optoelektronik großes Potenzial. Die Optoelektronik befasst sich mit der Wandlung von elektrischen in optische Signale (Licht) und umgekehrt. Langfristiges Ziel der Forschung ist es, optoelektronische Komponenten wie Leuchtdioden, die als Schnittstelle zwischen elektrischen und optischen Komponenten wirken, auf immer kleinere Dimensionen zu schrumpfen. Dadurch können informationstechnische Systeme langfristig deutlich kleiner und leistungsfähiger werden.

Die aktuelle Arbeit des Forscherteams um Professor Ralph Krupke vom Karlsruher Institut für Technologie (KIT) und der TU Darmstadt, Professor Hilbert von Löhneysen (KIT), Professor Andrea Ferrari von der University of Cambridge und Dr. Phaedon Avouris vom Forschungslabor der Firma IBM zeigt, dass optoelektronische Bauteile, die Licht unterschiedlicher Wellenlängen selektieren, auch mit Graphen realisierbar sind.

Die technische Herausforderung für die Forscher lag darin, zwischen Graphen und Elektroden einen Kontakt herzustellen und das Material zugleich in eine optische Mikrokavität zu integrieren. Eine optische Mikrokavität ist eine Struktur im Mikrometerbereich, die aus durch zwei für Licht unterschiedlicher Wellenlängen halbdurchlässige Spiegel mit einem genau definierten Abstand besteht. Mit dem genau festgelegten Spiegelabstand ist die Mikrokavität durchlässig für Licht einer bestimmten Farbe. Hierfür übertrug Dr. Antonio Lombardo (UC) Graphen auf das Zielsubstrat. Anschließend konnte der Physiker Michael Engel (KIT) durch komplexe Fabrikationsverfahren im Nano- und Mikrobereich Graphen mit Elektroden verbinden und zwischen zwei Silberspiegeln mit nur einigen Nanometer Abstand zueinander platzieren.

Durch das Anlegen einer elektrischen Spannung gelang es Dr. Mathias Steiner (IBM) und Michael Engel (KIT) Graphen zu erhitzen. Ähnlich wie eine Glühbirne beginnt das Material, bei hohen Temperaturen Licht zu emittieren. Die Farbe des emittierten Lichts ist jedoch, im Gegensatz zum Weißlicht einer Glühbirne, nun durch die umgebende Mikrokavität bestimmt.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!