03.07.2015 - University of Akron

Schaltbare Käfige: Herstellung molekularer Archimedischer Körper per Selbstorganisationsprozess

Regelrecht am Reißbrett entworfen haben Chemiker X-förmige organische Bausteine, die, von Metallionen zusammengehalten, die Form eines sogenannten archimedischen Kuboktaeders einnehmen. Durch Änderungen der Konzentration oder Austausch der Gegenionen konnte der Kuboktaeder zudem reversibel in zwei Oktaeder gespalten werden, wie die Wissenschaftler in der Zeitschrift Angewandte Chemie berichten – eine interessante neue Art eines Fusions-Fissions-Schaltprozesses.

Archimedische Körper sind eine Gruppe symmetrischer Körper mit regelmäßigen Vielecken als Seitenflächen und gleichartigen Ecken. Der klassische Fußball mit seinen 12 Fünfecken und 20 Sechsecken zählt z.B. dazu. Auch in der belebten Natur findet man solche Formen, so haben die starren Hüllen (Kapside) vieler Viren, aber auch bestimmter zellulärer Transportvesikel die Form archimedischer Körper. Sie entstehen in einem Selbstorganisationsprozess aus einzelnen Protein-Bausteinen. Chemiker haben dieses Konzept immer wieder als Inspiration aufgegriffen, um große molekulare Käfige zu synthetisieren, die über Koordinationsbindungen zusammengehalten werden.

Einem Team um Chrys Wesdemiotis und George R. Newkome ist es jetzt gelungen, einen ca. 6 nm großen Kuboktaeder aus organischen Molekülen und Metallionen herzustellen. Ein Kuboktaeder hat eine Oberfläche aus 8 Dreiecken und 6 Quadraten. Gedanklicher Ausgangspunkt war ein X-förmiger organischer Baustein, der, auf die Oberfläche eines Kuboktaeders gelegt, die benötigten Winkel zwischen den Kanten, nämlich 60° bzw. 90°, ergeben würde. Zudem sollte er als Ligand Metallionen binden, die für den nötigen Zusammenhalt sorgen sollten.

Aus 12 nach diesen Vorstellungen maßgeschneiderten X-förmigen Terpyridinliganden und 24 Metallionen – Zink bzw. Cadmium – konnten die Forscher dann in der Tat Kuboktaeder gewinnen, die sich in einem Selbstorganisationsprozess aus den einzelnen Bausteinen zusammenlagern. Der Nachweis der Struktur gelang dem Team von der University of Akron, der University of Chicago (Argonne), der University of South Florida (Tampa), der Florida Atlantic University (Boca Raton) sowie der Universität von Tokio (Japan) und der Tianjin University of Technology (China) anhand verschiedener spektroskopischer Verfahren, Modellrechnungen sowie Einkristallanalysen mit Synchroton-Röntgenbeugung. Unter dem Elektronenmikroskop ließ sich zudem die Form einzelner Moleküle erkennen.

Eine neuartige Beobachtung war, dass sich die Kuboktaeder bei einer Verdünnung der Konzentration in zwei Oktaeder spalten. Wurde die Lösung wieder aufkonzentriert, fusionierten die Oktaeder wieder zum Kuboktaeder. Dieser Prozess ließ sich außerdem durch einen Wechsel zwischen verschieden großen Gegenionen auslösen.

Der neue Ansatz könnte Ausgangspunkt für die Herstellung einer Reihe weiterer nanoskaliger Bausteine für die Materialwissenschaften darstellen. Zudem könnten sich die Zink-Kuboktader als Transportsysteme für Wirkstoffe eignen.

Mehr über University of Akron
  • News

    Ursache für faszinierendes Blau der Vogelspinne gefunden

    (dpa) Vogelspinnen beeindrucken - durch ihre Größe, die imposanten Beißklauen und oft auch ihr strahlendes Blau. Die faszinierende Farbe vieler Vogelspinnen entsteht jedoch nicht durch Pigmente. Ursache sind vielmehr unterschiedliche, mehrschichtige winzige Strukturen, sogenannte Nanostrukt ... mehr

Mehr über University of Chicago
  • News

    Auf dem Weg zum Stromtransport der Zukunft

    Supraleitende Kabel könnten Strom verlustfrei transportieren. So müsste weniger Strom erzeugt, Kosten und Treibhausgase könnten eingespart werden. Eine aufwendige Kühlung steht dem entgegen, denn bisherige Supraleiter verlieren ihren elektrischen Widerstand erst bei extrem niedrigen Tempera ... mehr

    Eine Tasche für Uran

    Die Verwendung von Uran als nuklearer Brennstoff und Waffenmaterial erhöht das Risiko, dass Menschen damit in Kontakt kommen. Die Lagerung radioaktiver Uranabfälle stellt ein zusätzliches Umweltrisiko dar. Bei einer Berührung mit Uran ist dessen Radioaktivität aber nicht das einzige Problem ... mehr

    Leuchten entlarvt Gift: Rasche, selektive Bestimmung von Blei

    Blei ist ein giftiges Schwermetall, das sehr gefährlich für Mensch und Umwelt werden kann. Bleivergiftungen zählen zu den häufigsten durch Umweltverschmutzung verursachten Erkrankungen. Für die rasche Diagnostik und Umweltanalytik vor Ort wäre ein einfacher, handlicher, aber zuverlässiger B ... mehr

Mehr über University of Tokyo
  • News

    Bessere, sicherere Batterien

    Zum ersten Mal haben Forscher, die die physikalischen und chemischen Eigenschaften der elektrischen Energiespeicherung erforschen, einen neuen Weg zur Verbesserung von Lithium-Ionen-Batterien gefunden. Es gelang ihnen, nicht nur die Spannungsabgabe einer Lithium-Ionen-Batterie zu erhöhen, s ... mehr

    "Öko"-Superkleber durch Kombination aus pflanzlichen Partikeln und Wasser

    In einer in Advanced Materials veröffentlichten Studie haben Forscher der Aalto University, der University of Tokyo, der Sichuan University und der University of British Columbia gezeigt, dass pflanzliche Cellulose-Nanokristalle (CNCs) einen Klebstoff bilden können, der die Konzepte der Nac ... mehr

    Bessere Chemie durch winzige Antennen

    Ein Forschungsteam der Universität Tokio hat eine leistungsstarke Methode vorgestellt, um chemische Bindungen aktiv zu brechen, indem es Anregungen in winzigen Antennen, die von Infrarotlasern erzeugt werden, verwendet. Dieser Prozess kann in der gesamten Chemie Anwendung finden, um chemisc ... mehr

Mehr über Tianjin University
  • News

    Kostengünstige, energieeffiziente Materialien

    Ein internationales Team von Wissenschaftlern der National University of Science and Technology "MISIS" (NUST MISISIS), der Tianjin University (China) sowie aus Japan und den USA hat neue energieeffiziente Legierungen auf Eisenbasis entwickelt, die hohe mechanische und magnetische Eigenscha ... mehr

    Nanostrukturierung erhöht Effizienz von metallfreien Photokatalysatoren um den Faktor Elf

    Polymere Kohlenstoffnitride entfalten unter Sonnenlicht eine katalytische Wirkung, die sich für die Produktion von solarem Wasserstoff nutzen lässt. Allerdings ist die Effizienz dieser günstigen, metallfreien Materialien sehr gering. Durch einen einfachen Prozess ist es nun gelungen, ihre k ... mehr

    Mehr Solarstrom mit Titan

    Preisgünstige, häufig in der Erdkruste vorkommende Metalle sind vielversprechende Photoelektrokatalysatoren für die künstliche Photosynthese. Ein chinesisches Forscherteam berichtet jetzt, dass eine dünne Schicht aus Titandioxid unter Nanostäbchen aus Hämatit als Photoanode die Leistungsfäh ... mehr

Mehr über Angewandte Chemie
  • News

    Auf dem Weg zum Stromtransport der Zukunft

    Supraleitende Kabel könnten Strom verlustfrei transportieren. So müsste weniger Strom erzeugt, Kosten und Treibhausgase könnten eingespart werden. Eine aufwendige Kühlung steht dem entgegen, denn bisherige Supraleiter verlieren ihren elektrischen Widerstand erst bei extrem niedrigen Tempera ... mehr

    Kaskaden mit Kohlenstoffdioxid

    Kohlenstoffdioxid (CO2) ist nicht nur ein unerwünschtes Treibhausgas, sondern auch eine interessante Rohstoffquelle, deren Recycling wertvoll und nachhaltig sein könnte. Ein spanisches Forschungsteam stellt in der Zeitschrift Angewandte Chemie einen neuartigen katalytischen Ansatz zur Umwan ... mehr

    Strukturfarben aus Cellulose-Polymeren

    Klare Oberflächen erscheinen farbig, wenn winzige, regelmäßige Strukturelemente darin Licht reflektieren. Forscher haben jetzt eine Methode entwickelt, um derartige Strukturfarben aus einem cellulosebasierten Polymer herzustellen. Dafür verwendeten sie beschichtete Tröpfchen, die sich in an ... mehr