11.08.2015 - Technische Universität Wien - Institut für Verbrennungskraftmaschinen u. Kraftfahrzeugbau

Neues Materialdesign ermöglicht ungestörte Lichtwellen

In Materialien sind überraschende Arten von Lichtwellen möglich

Wenn eine Lichtwelle in ein Material eindringt, ändert sie sich normalerweise drastisch. Sie wird gestreut und abgelenkt, und durch die Überlagerung von Lichtwellen kommt es zu einem Muster aus helleren und dunkleren Bereichen. In maßgeschneiderten Materialien, die das Licht lokal verstärken oder abschwächen können, ergeben sich nun neue Möglichkeiten solche Effekte vollständig zu unterdrücken:Diese neuen Materialien ermöglichen ganz besondere Lichtwellen, die im Inneren des Materials an jedem Ort dieselbe Intensität aufweisen. Durch diese ungewöhnlichen Eigenschaften könnten sich diese neuartigen Lösungen der Wellengleichung des Lichts technisch nutzen lassen.

Hindernisse verändern die Lichtintensität

Wenn sich eine Lichtwelle gerade und eben durch den freien Raum bewegt, dann kann sie überall dieselbe Intensität haben. Trifft sie allerdings auf ein Hindernis, dann wird die Welle abgelenkt, das Licht ist danach an manchen Stellen heller, an anderen Stellen dunkler. Erst durch solche Überlagerungs- oder Interferenzeffekte können wir Objekte sehen, die selbst kein Licht ausstrahlen.

In den letzten Jahren gab es allerdings immer wieder Experimente mit neuen Materialien, die Lichtwellen auf ganz besondere Weise verändern können: Sie können das Licht lokal verstärken oder auch abschwächen. „Wenn solche Prozesse möglich sind, muss man die Lichtwelle mathematisch anders beschreiben, als man es in gewöhnlichen, transparenten Materialien tut“, erklärt Prof. Stefan Rotter (Institut für Theoretische Physik, TU Wien). „Wir sprechen dann von sogenannten nicht-hermitischen Medien.“

Eine neue Lösung für die Wellengleichung

Konstantinos Makris und Stefan Rotter entdeckten gemeinsam mit Kollegen aus den USA, dass sich damit neuartige Lösungen der Wellengleichung finden lassen. „Man erhält Lichtwellen, die überall gleich hell sind, wie bei einer ebenen Welle im freien Raum, obwohl die Welle ein stark strukturiertes Material durchdringt“, sagt Konstantinos Makris. „Für die Welle ist das Material in gewissem Sinn unsichtbar, obwohl sie es durchdringt und mit ihm stark wechselwirkt.“

Das neue Konzept der Physiker erinnert an sogenannte „Metamaterialien“, mit denen in den letzten Jahren viel experimentiert wurde. Dabei handelt es sich um strukturierte Materialien, die Licht auf ungewöhnliche Weise ablenken und in bestimmten Fällen um ein Objekt herum führen können, sodass das Objekt unsichtbar gemacht wird. „Unsere nicht-hermitischen Materialien funktionieren allerdings auf Basis eines anderen Prinzips“, betont Stefan Rotter. „Die Lichtwelle wird nicht außen herumgelenkt, sondern sie durchdringt das Material. Aber der Effekt, den das Material auf die Intensität der Welle hat, wird durch ein genau justiertes Wechselspiel aus Verlust und Verstärkung ausgeglichen.“ Am Ende ist die Welle überall im Raum genauso hell, wie sie ohne das Objekt gewesen wäre.

Bis es tatsächlich gelingt, Objekte herzustellen, die Lichtwellen unberührt passieren lassen, ist noch eine Reihe technischer Details zu lösen – gearbeitet wird daran bereits. Mathematisch ist allerdings nun bewiesen, dass es neben Metamaterialien auch noch einen anderen, äußerst vielversprechenden Pfad gibt, Wellen auf ungewöhnliche Weise zu manipulieren. „In einem gewissen Sinn haben wir mit unserer ersten Arbeit zu diesem Thema eine Tür aufgestoßen, hinter der wir noch eine Vielzahl an neuen Einsichten vermuten“, erklärt Konstantinos Makris.

Fakten, Hintergründe, Dossiers
  • nicht-hermitische M…
  • TU Wien
  • Metamaterialien
Mehr über TU Wien
  • News

    Ein Sandstrahler auf atomarer Ebene

    Von Halbleitern bis zum Mondgestein: Viele Materialien bearbeitet man mit Ionenstrahlen. An der TU Wien ließ sich nun erklären, wie dieser Prozess von der Rauigkeit der Oberfläche abhängt. Wenn man eine Metalloberfläche von einer Lackschicht befreien möchte, kann man dafür einen Sandstrahle ... mehr

    Einzelne Atome verankern

    Oft heißt es „never change a running system“. Dabei können neue Methoden den alten weit überlegen sein. Während chemische Reaktionen bislang vor allem mit größeren Materialmengen, bestehend aus mehreren hundert Atomen, beschleunigt werden, liefern Einzelatome einen neuen Ansatz für die Kata ... mehr

    Wie sich Ionen ihre Elektronen zurückholen

    Die atomaren Zustände, die in den Labors der TU Wien erzeugt werden, sind sehr außergewöhnlich und spielen für die Forschung eine wichtige Rolle. Es handelt sich um hochgeladene Ionen, also um Atome, die extrem stark elektrisch geladen sind, weil ihnen nicht nur ein Elektron weggenommen wur ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Organs-on-a-Chip

    Ziel der personalisierten Medizin oder Präzisionsmedizin ist es, den Patienten über die funktionale Krankheitsdiagnose hinaus unter bestmöglicher Einbeziehung individueller Gegebenheiten zu behandeln. Organ-on-a-Chip-Technologien gewinnen für die personalisierte Medizin sowie die pharmazeut ... mehr

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Sarah Spitz

    Sarah Spitz, Jahrgang 1993, studierte Biotechnologie an der Universität für Bodenkultur in Wien (BOKU) mit Abschluss Diplomingenieur. Während ihres Studiums war sie für zwei Jahre als wissenschaftliche Mitarbeiterin am Department für Biotechnologie (DBT) der BOKU angestellt. Nach einer inte ... mehr

    Prof. Dr. Peter Ertl

    Peter Ertl, Jahrgang 1970, studierte Lebensmittel- und Biotechnologie an der Universität für Bodenkultur, Wien. Im Anschluss promovierte er in Chemie an der University of Waterloo, Ontario, Kanada und verbrachte mehrere Jahre als Postdoc an der University of California, Berkeley, USA. 2003 ... mehr

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr