Neue Hybrid-Tinten ermöglichen gedruckte, flexible Elektronik ohne Sintern

15.04.2016 - Deutschland

Forscher am INM - Leibniz-Institut für Neue Materialien haben die Vorteile von organischen und anorganischen elektronischen Materialien in neuen Hybrid-Tinten vereinigt. Damit lassen sich Schaltkreise direkt aus dem Füller auf Papier auftragen.

INM

Schaltkreise direkt aus dem Füller

Die Elektronik von morgen ist gedruckt. Biegsame Schaltkreise auf Folien oder Papier können günstig durch Druckverfahren hergestellt werden und erlauben futuristische Designs mit gekrümmten Leucht- oder Eingabeelementen. Das erfordert druckbare elektronische Materialien, die während der Verarbeitung keinen Schaden nehmen und deren Leitfähigkeit trotz gebogener Oberflächen während des Einsatzes hoch bleibt. Bewährte Materialien sind zum Beispiel organische, leitende Polymere, Nanopartikel aus leitfähigen Oxiden (TCOs) oder Metallpartikel. Forscher am INM – Leibniz-Institut für Neue Materialien haben nun die Vorteile von organischen und anorganischen elektronischen Materialien in neuen Hybrid-Tinten vereinigt. Damit lassen sich Schaltkreise zum Beispiel direkt aus dem Füller auf Papier auftragen.

Für ihre Hybrid-Tinten haben die Forscher Nanopartikel aus Metallen mit organischen, leitfähigen Polymeren umhüllt und in Mischungen aus Wasser und Alkohol suspendiert. Diese Suspensionen können direkt mit einem Füller auf Papier oder Folie aufgebracht werden und trocknen ohne weitere Bearbeitung zu elektrischen Schaltkreisen.

„Elektrisch leitende Polymere werden beispielsweise in OLEDs verwendet, die auch auf flexiblen Substraten hergestellt werden können“, erklärt Tobias Kraus, Leiter der Forschungsgruppe Strukturbildung am INM. „Durch die Kombination mit Metall-Nanopartikeln vereinen wir mechanische Flexibilität mit der Robustheit eines Metalles und erhöhen gleichzeitig die elektrische Leitfähigkeit.“

Die Entwickler kombinieren die organischen Polymere mit Gold- oder Silber-Nanopartikeln. Darin übernehmen die organischen Verbindungen drei Funktionen: „Einerseits sorgen die Verbindungen als Liganden dafür, dass die Nanopartikel im Flüssig-Gemisch suspendiert bleiben; ein Verklumpen von Partikeln würde beim Drucken stören. Gleichzeitig sorgen die organischen Liganden dafür, dass sich die Nanopartikel beim Trocknen gut anordnen. Schließlich wirken die organischen Verbindungen wie „Scharniere“: biegt man das Material, erhalten sie die elektrische Leitfähigkeit aufrecht. In einer Lage von Metallpartikeln ohne die Polymer-Hülle wäre die elektrische Leitfähigkeit beim Biegen rasch verloren“, fährt der Materialwissenschaftler Kraus fort. Durch die Kombination beider Materialien sei die elektrische Leitfähigkeit beim Biegen deshalb insgesamt höher als bei einer Schicht rein aus leitfähigem Polymer oder einer Schicht rein aus Metall-Nanopartikeln.

„Metall-Nanopartikel mit Liganden werden auch heute schon zu Elektronik verdruckt“, erläutert der Physikochemiker Kraus. Die Hüllen müssten aber meist durch Sintern entfernt werden, weil sie zwar die Anordnung der Nanopartikel steuern, aber nicht leitfähig sind. Das sei bei temperaturempfindlichen Trägermaterialien wie Papier oder Polymerfolien schwierig, da diese während des Sinterns Schaden nähmen. „Unsere neuen Hybrid-Tinten sind sofort nach dem Eintrocknen leitfähig, mechanisch besonders flexibel und kommen ohne Sintern aus“, fasst Kraus die Ergebnisse seiner Forschung zusammen.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

HYPERION II

HYPERION II von Bruker

FT-IR und IR-Laser-Imaging (QCL) Mikroskop für Forschung und Entwicklung

Untersuchen Sie makroskopische Proben mit mikroskopischer Auflösung (5 µm) in sekundenschnelle

FT-IR-Mikroskope
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller