DNA als Schablone für Mineralien

DNA-Strukturen mit Silikaten abformen - ein Schritt auf dem Weg zu geordneten künstlichen anorganischen Materialien?

18.06.2004
Die Erbsubstanz DNA trägt den Bauplan für alles Lebende - nun soll sie auch als Schablone für "tote" anorganische Materie dienen. Allerdings in völlig anderer Weise als der gewohnten "Übersetzung" ihres Codes aus Basenpaaren - statt dessen zählt ihre räumliche Struktur: Japanische Forscher nutzen das Erbmolekül als "Gerüst" für den Aufbau winziger Stäbchen und Kringel aus Silikat. Betrachtet man Kieselalgen unter dem Mikroskop, eröffnet sich ein bizarrer Mikrokosmos: Das Gerüst der Winzlinge besteht aus erstaunlich präzise gebauten Silikatstrukturen. Das Interesse an solchen hochgeordneten anorganischen Nanostrukturen, die als mögliche Katalysatoren oder Bauteile für die Nanotechnologie gehandelt werden, ist groß, ein Nachbau in Form künstlicher Fossilien scheint bisher jedoch unmöglich. Während sich organische Materialien über einen Selbstorganisationsprozess kleinerer maßgeschneiderter Bausteine zu definierten Überstrukturen zusammenfügen lassen, sind anorganische dazu nicht in der Lage. Der Ausweg könnte sein, organische Aggregate oder große Biomoleküle als Ausgangspunkt für den Aufbau anorganischer Strukturen zu nutzen. Das Team um Seiji Shinkai wählte eine Plasmid-DNA aus Bakterien als Matrize, um winzige Silikatstrukturen zu bauen. Zwei Hindernisse mussten dazu überwunden werden: Die eingesetzten Silikat-Vorstufen sind negativ geladene Moleküle und lagern sich nur an eine positive Schablone an - die DNA trägt aber ebenfalls negative Ladungen. Zudem braucht der Silikat-Vorläufer ein organisches Lösemittel, die DNA ist nur in Wasser löslich. Beide Probleme konnte das Team elegant auf einen Schlag lösen: Durch Anlagerung eines speziellen Ions an die DNA, einer Kohlenwasserstoffkette, die an Kopf und Schwanz je eine positiv geladene Gruppe trägt. Das Besondere: Die Kopfgruppe ist eine Guanidiumgruppe, hier "teilen" sich zwei Stickstoffatome eine positive Ladung und können so gleichzeitig an zwei Sauerstoffatome der negativ geladenen Phosphatgruppen des DNA-Rückgrates andocken - eine besonders bevorzugte Konstellation. Die Vorliebe der DNA-Phosphate für die Guanidinium-Gruppen ist daher um vieles größer als für die zweite Ladung am Schwanz der Ionen. Sie bleibt frei und verleiht der DNA die positive Ladung, um die Silikat-Vorläufer anzulocken und festzuhalten. Die Kohlenwasserstoffketten der angedockten Ionen vermitteln die notwendige Löslichkeit der DNA im organischen Lösemittel. So vorbereitet erwies sich die Plasmid-DNA als ideale Matrix für die Silikatbildung: Die Silikat-Vorläufer lagern sich an und verschmelzen zu einem Silikatmaterial. Die DNA kann später durch Erhitzen entfernt werden. Normalerweise liegt die Plasmid-DNA zu einem stabförmigen Gebilde verdrillt vor. Durch Enzyme kann sie zu einem ringförmigen Molekül entspannt werden. Beide Formen, Stäbchen und Kringel, lassen sich in Silikat abformen. Die Forscher hoffen, mit anderen DNA-Typen noch weitere dieser nanoskopischen "künstliche Fossilien" zu erzeugen.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!