Silberreiche Anhäufungen
Große Clusterkomplexe mit fast 500 Silberatomen
Nanoskopische Anhäufungen aus Atomen, so genannte Cluster, sind das Steckenpferd des Forscherteams um Dieter Fenske von der Universität Karlsruhe und dem Forschungszentrum Karlsruhe. Herstellung und Charakterisierung von Clustern interessanter Halbleitermaterialien stehen dabei im Fokus. Wie in der Zeitschrift Angewandte Chemie berichtet, konnte das Team nun vier neue, besonders große und silberreiche Cluster synthetisieren und deren Kristallstruktur ermitteln.
Zwei- oder dreidimensionale Nanostrukturen aus Halbleitermaterialien sind für zukünftige nanoelektronische Anwendungen interessant. Solche Strukturen könnten aus Anordnungen von Clustern aufgebaut werden. Winzig wie sie sind, haben Cluster zum Teil vollkommen andere Eigenschaften als "normal große" (makroskopische) Feststoffpartikel. Grund ist das hohe Verhältnis von Oberfläche zu Volumen. Für eine exakte Interpretation der gemessenen physikalischen Eigenschaften von Clustern ist es wichtig, den atomaren Aufbau dieser Nanopartikel zu kennen.
Fenske und sei Team arbeiten unter anderem an der Synthese metallreicher Cluster der Elemente Schwefel, Selen und Tellur (Chalkogene). Als metallischer Gegenpart erwiesen sich vor allem die Münzmetalle Kupfer und Silber als geeignet. Mithilfe speziell entwickelter synthetischer Methoden gelang den Wissenschaftlern der Aufbau so genannter molekularer Clusterkomplexe. Clusterkerne aus Metall- und Chalkogenatomen werden dabei von einer schützenden Hülle aus organischen Liganden umgeben. Diese Schutzschicht verhindert, dass die winzigen Anhäufungen aggregieren und zu größeren Partikeln oder Festkörpern zusammenwachsen. Mit diesem Trick ist es den Forschern geglückt, besonders große silberreiche Cluster herzustellen. Die jüngsten Mitglieder dieser Clusterfamilie bestehen aus verzerrten kugelförmigen Silberchalkogenidkernen von 2 bis 4 Nanometer Durchmesser, deren Oberflächen durch Thiolat- oder Phosphanliganden geschützt sind.
Solche großen, metallreichen Clusterkomplexe per Röntgenstrukturanalyse zu charakterisieren, ist extrem schwierig. Genau genommen ist es eigentlich gar nicht möglich, eine exakte Zusammensetzung zu bestimmen. Einer der Gründe sind Fehlordnungen im Kristallgitter. Die Tendenz zur Fehlordnung steigt mit zunehmender Anzahl an Silberatomen. Mit Hilfe einer Kombination aus Röntgenstreuung, Massenspektrometrie und Elektronenmikroskopie gelang den Forschern jedoch, idealisierte Summenformeln und einen idealisierten atomaren Aufbau für ihre Cluster abzuleiten. Die silberreichste Verbindung besteht aus Clustern mit ungefähr 490 Silber- und 188 Schwefelatomen sowie 114 schwefelorganischen Liganden und einer idealisierten Zusammensetzung [Ag 490S188(StC5H11)114].
Originalveröffentlichung: Dieter Fenske et al.; "Synthesen und Kristallstrukturen der ligandenstabilisierten Silberchalkogenidcluster [Ag154Se77(dppxy)18], [Ag320(StBu)60S130(dppp)12], [Ag352S128(StC5H11)96] und [Ag490S188(StC5H11)114]"; Angewandte Chemie 2007.
Meistgelesene News
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren

NANOPHOX CS von Sympatec
Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren
Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

DynaPro Plate Reader III von Wyatt Technology
Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung
Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Massenspektrometrie
Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!

Themenwelt Massenspektrometrie
Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!
Zuletzt betrachtete Inhalte

Mobiler Chemieroboter mit künstlicher Intelligenz - Chemiker der Universität Liverpool erhält Royal Society-Professur, um die Intelligenz des ersten vollautonomen mobilen Chemieroboters zu erweitern

Designer-Elektronik aus dem Drucker - Optimiertes Druckverfahren ermöglicht maßgeschneiderte Organische Elektronik

VICI - Valco Instruments Co. Inc. - Houston, USA

SHERWOOD PRODUCTS S.A. - Las Condes, Chile
Air Products ernennt Frank Schnitzeler zum Business Development Manager Wasserstoff
Brasilianische Wettbewerbshüter genehmigen Monsanto-Kauf durch Bayer

MPU Meß- und Prüfstelle Techn.Umweltschutz Ges.mbH - Berlin, Deutschland
DFG bewilligt elf neue Sonderforschungsbereiche - Programmänderung vereinfacht Förderangebot für Nachwuchsgruppen

Per Teilchenschauer Bauteile durchleuchten - HZDR-Forscher*innen wollen die Myonen-Bildgebung für Brücken, Chemieparks und Castor-Behälter ertüchtigen
