22.11.2018 - Ruhr-Universität Bochum (RUB)

Wie sich ein Kristall in Wasser löst

Der Lösungsvorgang ist für die Chemie von fundamentaler Bedeutung – aber sehr schwer zu beobachten

Wie sich ein Molekül aus einem festen Kristallverband in einem flüssigen Lösemittel löst, haben Chemiker der Ruhr-Universität Bochum erstmals auf molekularer Ebene beobachtet. Bei Raumtemperatur erfolgt der Prozess zu schnell, um ihn entschlüsseln zu können. Daher nutzte das Team des Exzellenzclusters Ruhr Explores Solvation, kurz Resolv, mikroskopische Methoden, die mit besonders tiefen Temperaturen arbeiten. Die relevanten Schritte des Lösevorgangs beschreibt die Gruppe um Dr. Karsten Lucht und Prof. Dr. Karina Morgenstern vom Lehrstuhl für Physikalische Chemie I in der Zeitschrift „Angewandte Chemie“ vom 11. Oktober 2018.

„Den Löseprozess zu verstehen ist von grundlegender Bedeutung für die Chemie, da das Wissen helfen könnte, die Wechselwirkung zwischen Lösemittel und gelösten Molekülen gezielt zu beeinflussen und damit chemische Reaktionen noch umfassender zu kontrollieren“, erklärt Karsten Lucht.

Für die Studie analysierten die Chemiker Kristalle eines organischen Moleküls mit der Tieftemperatur-Rastertunnelmikroskopie, die bei minus 265 Grad Celsius arbeitet. Bei dieser Temperatur kommen molekulare Bewegungen zum Stillstand, sodass die einzelnen Moleküle abgebildet werden können.

Wasser löst Kristallverband auf

Die Forscher fixierten die organischen Moleküle auf einer speziellen Silberoberfläche. Darauf bildeten die funktionellen Gruppen der Moleküle Ketten. „Diese Struktur entspricht einem eindimensionalen Kristall“, erklärt Lucht. Dann gaben die Wissenschaftler eine geringe Menge Wasser hinzu, das sich an definierten Positionen an die organischen Moleküle anlagerte. Schließlich erwärmten sie das System auf minus 193 Grad Celsius, wobei die Kristallstruktur komplett verloren ging.

„Der Verlust der molekularen Ordnung entspricht dem Auflösen des organischen Kristalls in einer realen Lösung“, beschreibt Karina Morgenstern. Die einzelnen organischen Moleküle wechselwirken nur noch mit den Wassermolekülen und können daher als gelöst aufgefasst werden. „So konnten wir die relevanten Schritte des Lösevorgangs erstmals an einzelnen Molekülen beobachten, also den trockenen Kristall, die Anlagerung des Lösemittels an ihn und seine vollständige Auflösung“, resümiert die Forscherin.

Fakten, Hintergründe, Dossiers
  • Moleküle
  • chemische Reaktionen
Mehr über Ruhr-Universität Bochum
  • News

    Algen als lebende Biokatalysatoren für eine grüne Industrie

    Viele Substanzen, die wir täglich nutzen, wirken nur in der richtigen 3D-Struktur. Natürliche Enzyme könnten sie umweltfreundlich herstellen – wenn sie nicht einen bisher nur teuer zu erzeugenden Hilfsstoff bräuchten. Ein Forschungsteam der Ruhr-Universität Bochum (RUB) hat in einzelligen G ... mehr

    Neue Chemie für ultradünne Gassensoren

    Die Anwendung von Zinkoxidschichten in der Industrie ist vielfältig und erstreckt sich vom Schutz verderblicher Waren vor Luft bis zur Detektion von giftigen Stickoxiden. Solche Schichten können mit Hilfe der Atomlagenabscheidung (engl. Atomic layer deposition, kurz ALD) hergestellt werden, ... mehr

    Der doppelte Mantel um Moleküle in Wasser

    Wasserabweisende Moleküle sind im Wasser von einer Ummantelung aus zwei verschiedenen Schichten umgeben: Die innere Lage bildet ein zweidimensionales Netzwerk. Darüber liegt eine Übergangsschicht, die eine stärkere Bindung zum umgebenden Wasser hat. Bisher hatte man angenommen, dass in der ... mehr

  • q&more Artikel

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

    Mathies V. Evers

    Mathies Evers, Jahrgang 1989, studierte Chemie an der Ruhr-Universität Bochum, wo er an der Synthese atompräziser molekularer Cluster forschte. Nach seinem Masterabschluss begann er seine Doktorarbeit am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik und wird durch den ... mehr

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik promovierte im Jahr 2012 an der TU Dresden und arbeitete als Postdoktorandin am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden sowie an der Universität Oxford. Danach baute sie gefördert durch ein NRW-Rückkehrprogramm die Arbeitsgruppe für „Elektrochemie u ... mehr