Meine Merkliste
my.chemie.de  
Login  

Partitionierung von porösen Materialien

Hoch resorptive MOFs können durch kluge Verknüpfung zweier grundsätzlich verschiedener Synthesearten aufgebaut werden

02.05.2019

© Wiley-VCH

Gase und Verunreinigungen können aus der Luft oder Flüssigkeiten mittels poröser, kristalliner Materialien gefiltert werden. Besonders metallorganische Gerüstverbindungen (englisch „Metal–organic framework“, kurz MOF) sind hierfür geeignet. Ihre Aufnahmekapazität haben Wissenschaftler durch einen synthetischen Kniff nun erhöhen können: Durch Verknüpfung der Koordinationschemie von Metallen mit der kovalenten Chemie von leichten Elementen erhielten sie porenpartitionierte MOFs. Wie sie in ihrer in der Zeitschrift Angewandte Chemie erschienenen Arbeit ausführen, adsorbierte dieses neue Material besonders gut Ammoniakgas.

Strukturell sind MOFs ein Koordinationsnetzwerk aus Metallen und verbrückenden organischen Molekülen. In ihren symmetrischen großen Poren können MOFs besonders gut Gase einfangen. Die Gasmoleküle lagern sich an den Adsorptionsstellen an, die von den Metallionen und den organischen Molekülen gebildet werden. Nun sind aber für viele kleinere Gase wie CO2, Acetylen und Ammoniak die Poren in typischen MOFs eigentlich zu groß. Die Forscher stellten fest, dass die Kapazität steigt, wenn das Netzwerk dichter ist und mehr Adsorptionsstellen enthält.

Daher versuchte die Forschungsgruppe um Pingyun Feng an der University of California (USA) die Poren mit Liganden – Molekülen, die sich auf definierte Weise an andere Moleküle anlagern – zu partitionieren. Die Partitionierung hätte noch einen weiteren Vorteil; sie könnte die MOFs stabilisieren. MOFs konnten andere Sorptionsmaterialien wie Zeolite und Aktivkohle bisher noch nicht verdrängen, da letztere robuster sind.

Für die Partitionierung wählte Yanxiang Wang, eine Doktorandin in Fengs Gruppe, ein ungewöhnliches, scheinbar riskantes Molekül: Pyridin-4-boronsäure. Dieses Molekül enthält am jeweils anderen Ende zwei leichte Elemente, die komplementär reagieren. Bor zieht als Lewis-Säure Reagenzien mit hoher Elektronendichte an, während der Pyridin-Stickstoff, eine Lewis-Base, sehr gerne mit Lewis-Säuren reagiert. Eine unkontrollierte Reaktion von Pyridin-4-boronsäure mit sich selbst wäre daher nicht überraschend.

Was hier aber nicht geschah, weil die Autoren die Reaktion der Pyridin-4-boronsäure in die MOF-Synthese integrierten. In dieser Konstellation zwang die Metallkoordination die Pyridin-4-boronsäure in eine definierte Reaktion: Exakt immer drei Moleküle bildeten ein Trimer. Dieses exakt dreieckige, aus drei Einheiten aufgebaute Molekül passte genau in die hexagonalen Poren des MOF. Es entstand ein MOF mit integriertem kovalent-organischen Netzwerk oder „Porenraum-partitioniertes MOF“. Durch diesen synthetischen Kniff bauten die Wissenschaftler viel mehr Adsorptionsstellen ein, ohne die Poren zu verstopfen.

Die Forscher kombinierten dann mehrere Metalle und organische Liganden zu MOFs. Alle neuen partitionierten MOFs übertrafen die unpartitionierten bei der Aufnahme von Gasen. Und weil wegen der neuen organischen Liganden mehr Lewis-saure Stellen zur Verfügung standen, wurde insbesondere Ammoniakgas aufgenommen, das eine außergewöhnlich hohe Packungsdichte erreichte. Die Arbeit stellt nicht nur einen weiteren Fortschritt bei den metallorganischen Gerüstverbindungen dar. Sie zeigt auch erneut, dass scheinbar Unmögliches – wie die saubere Trimerisierung einer Pyridinboronsäure – doch möglich gemacht werden kann. Und für Nützliches gut ist.

Fakten, Hintergründe, Dossiers
  • poröse Materialien
  • Metal-Organic Frameworks
  • Liganden
Mehr über UC Riverside
  • News

    Abbildung von leitenden Kanten in einem vielversprechenden 2D-Material

    Ein Forschungsteam aus Wissenschaftlern der University of California, Riverside und der University of Washington hat erstmals die "Kantenleitung" in monoschichtigem Wolframditellurid, kurz WTe2, einem neu entdeckten topologischen 2-D-Isolator und Quantenmaterial, direkt abgebildet.Die Forsc ... mehr

    Musikalischer Sensor identifiziert gefälschte Medikamente

    Was, wenn eine einzige musikalische Note den Unterschied zwischen Leben und Tod bedeuten könnte?Ein neuer Sensor, der auf einem 3000 Jahre alten afrikanischen Musikinstrument basiert, kann verwendet werden, um Substanzen zu identifizieren, einschließlich einer giftigen Chemikalie, die Medik ... mehr

  • Videos

    The Glass is Greener

    Researchers at the University of California, Riverside's Bourns College of Engineering are using waste glass bottles and a low-cost chemical process to create nanosilicon anodes for lithium-ion batteries that will extend the battery life of electric vehicles and personal electronics. mehr

Mehr über Angewandte Chemie
  • News

    Tetravinylallen, eine kleine, aber nützliche chemische Substanz, wurde erstmals hergestellt

    Viele Naturstoffe haben einen komplizierten molekularen Aufbau und lassen sich nur schwer im Labor herstellen. Hilfe könnte von einem kleinen Kohlenwasserstoff namens Tetravinylallen kommen, das australische Wissenschaftler zum ersten Mal synthetisiert haben. Chemiker könnten mit dieser Sub ... mehr

    Eingewickelte Silber-Häufchen

    Unter Nanoclustern versteht man „Häufchen“ aus einigen wenigen Atomen, die oft interessante optische Eigenschaften zeigen und attraktive Sonden für bildgebende Verfahren werden könnten, etwa in der Biomedizin und Diagnostik. In der Zeitschrift Angewandte Chemie stellen Forscher einen Nanocl ... mehr

    Bunte Mikroreaktoren nutzen Sonnenlicht

    Die Sonne ist die nachhaltigste Energiequelle auf unserem Planeten und lässt sich nutzen, um photochemische Reaktionen in Gang zu bringen. In der Zeitschrift Angewandte Chemie stellen Wissenschaftler einen breit anwendbaren, kostengünstigen Photo-Mikroreaktor vor. Er basiert auf „lumineszie ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.