Meine Merkliste
my.chemie.de  
Login  

Mysteriöse Freisetzung radioaktiven Materials aufgedeckt

30.07.2019

Die TU Wien beteiligte sich an einer Studie, geleitet vom IRSN in Frankreich und der Leibniz Universität Hannover, um die Herkunft einer radioaktiven Wolke aus dem Jahr 2017 aufzuklären.

Es war die gravierendste Freisetzung von radioaktivem Material seit Fukushima 2011, doch die Öffentlichkeit nahm kaum Notiz davon: Im September 2017 zog eine leicht radioaktive Wolke über Europa. In einer nun veröffentlichten Studie wurden über 1.300 Messwerte aus ganz Europa und anderen Weltregionen analysiert, um die Ursache dieses Vorfalls herauszufinden. Das Ergebnis: Es handelte sich nicht um einen Reaktorunfall, sondern um einen Unfall in einer Wiederaufbereitungsanlage. Der exakte Ursprung der Radioaktivität ist schwer zu ermitteln, doch die Daten legen einen Freisetzungsort im südlichen Ural nahe. Dort befindet sich die russische Nuklearanlage Majak. Für die Bevölkerung in Europa bestand zu keinem Zeitpunkt irgendeine Gesundheitsgefahr.

Zu den 70 Expert_innen aus ganz Europa, die Daten und Expertise für die aktuelle Studie beisteuerten, gehören auch Dieter Hainz und Dr. Paul Saey vom Atominstitut der TU Wien. Ausgewertet wurden die Daten von Prof. Georg Steinhauser von der Universität Hannover, der an der TU Wien habilitiert und eng mit dem Atominstitut verbunden ist, gemeinsam mit Dr. Olivier Masson vom Institut de Radioprotection et de Sûreté Nucléaire (IRSN) in Frankreich. Die Ergebnisse der Studie hat das gesamte Team jetzt in der renommierten Zeitschrift „Proceedings of the National Academy of Sciences of the USA“ (PNAS) veröffentlicht.

Ungewöhnliche Ruthenium-Freisetzung

„Gemessen wurde radioaktives Ruthenium-106“, erklärt Georg Steinhauser. „Die Messwerte weisen auf die wahrscheinlich größte singuläre Freisetzung von Radioaktivität aus einer zivilen Wiederaufbereitungsanlage hin.“ In zahlreichen Länder Europas wurde im Herbst 2017 eine Wolke von Ruthenium-106 gemessen, mit Höchstwerten in der Höhe von 176 Millibecquerel pro Kubikmeter Luft. Die Werte waren bis zu 100-mal höher als die Gesamtkonzentrationen, die nach Fukushima in Europa gemessen wurden. Die Halbwertszeit des radioaktiven Isotops beträgt 374 Tage.

Diese Art der Freisetzung ist durch und durch ungewöhnlich. Die Tatsache, dass neben Ruthenium keine anderen radioaktiven Stoffe gemessen wurden, lieferte das entscheidende Indiz, dass die Quelle eine Wiederaufbereitungsanlage gewesen sein musste.

Auch die Ausdehnung der Ruthenium-106-Wolke war bemerkenswert – sie wurde in weiten Teilen Mittel- und Osteuropas, Asiens und der Arabischen Halbinsel gemessen. Sogar bis in der Karibik konnte Ruthenium-106 nachgewiesen werden. Das gelang durch ein informelles, internationales Netzwerk nahezu aller europäischen Messstationen. Insgesamt waren 176 Messstationen aus 29 Ländern beteiligt. In Österreich betreibt neben dem Atominstitut auch die AGES (Österreichische Agentur für Gesundheit und Ernährungssicherheit) solche Stationen, unter anderem im Hochgebirgsobservatorium am Sonnblick in 3.106 m Seehöhe.

Keine Gefahr für die Gesundheit

So ungewöhnlich die Freisetzung auch war, die Werte haben (zumindest in Europa) nirgendwo gesundheitsschädigende Levels erreicht. Aus der Analyse der Daten lässt sich eine Gesamtfreisetzung von etwa 250 bis 400 Terabecquerel an Ruthenium-106 ableiten. Für diese beträchtliche Freisetzung im Herbst 2017 hat bis heute kein Staat die Verantwortung übernommen.

Die Auswertung des Konzentrationsverteilungsmusters und atmosphärischer Modellierungen legen einen Freisetzungsort im südlichen Ural nahe. Dort befindet sich die russische Nuklearanlage Majak. Die russische Wiederaufbereitungsanlage war bereits im September 1957 Schauplatz der zweitgrößten nuklearen Freisetzung in der Geschichte gewesen – nach Tschernobyl und noch vor Fukushima. Damals war ein Tank mit flüssigen Abfällen aus der Plutoniumproduktion explodiert, was eine massive Kontamination der Gegend verursachte.

Olivier Masson und Georg Steinhauser grenzen den Zeitpunkt der aktuellen Freisetzung auf die Zeit zwischen dem 25. September 2017, 18:00 Uhr, und dem 26. September 2017 mittags ein – also fast auf den Tag genau 60 Jahre nach dem Unfall von 1957. „Diesmal ist es eine gepulste Freisetzung gewesen, die rasch wieder vorüber war“, sagt Professor Steinhauser. Im Unterschied dazu dauerten die Freisetzungen von Tschernobyl oder Fukushima über Tage hinweg an. „Wir konnten zeigen, dass der Unfall in der Wiederaufbereitung von abgebrannten Brennelementen passiert ist, und zwar in einem weit fortgeschrittenen Stadium der Wiederaufbereitung, kurz vor dem Ende der Prozesskette“, ergänzt Georg Steinhauser. „Auch wenn es derzeit noch keine offizielle Stellungnahme gibt, haben wir eine recht detaillierte Vorstellung davon, was passiert sein könnte.“

Fakten, Hintergründe, Dossiers
Mehr über TU Wien
  • News

    Weltrekord-Material macht aus Wärme Elektrizität

    Ein neuartiges Material erzeugt aus Temperaturunterschieden sehr effizient elektrischen Strom. Damit können sich Sensoren und kleine Prozessoren kabellos selbst mit Energie versorgen. Thermoelektrische Materialien können Wärme direkt in elektrische Energie umwandeln. Das liegt am sogenannte ... mehr

    Rätsel gelöst: Das Quantenleuchten dünner Schichten

    Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden. Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolf ... mehr

    Elastische Nano-Schichten für bessere Li-Ionen-Akkus

    An der TU Wien wurde eine Messmethode entwickelt, durch die es nun möglich werden soll, die Speicherkapazität von Lithium-Ionen-Akkus deutlich zu vergrößern. Sie liefern Energie für unsere Elektroautos, für unsere Handys und Laptops: Mit Lithium-Ionen-Akkus haben wir Tag für Tag zu tun. Es ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr

    Prof. Dr. Marko D. Mihovilovic

    Marko D. Mihovilovic, Jg. 1970, studierte von 1988–1993 technische Chemie an der TU Wien und promovierte dort 1996 im Bereich Organische Synthesechemie. Anschließend war er für Postdoc-Aufenthalte als Erwin-Schrödinger-Stipendiat an der University of New Brunswick, Kanada sowie an der Unive ... mehr

Mehr über Uni Hannover
  • News

    Die Grenzen der Messgenauigkeit verschieben

    Seit Jahrhunderten erweitert die Menschheit ihr Verständnis der Welt durch immer genauere Messungen von Licht und Materie. Heute sind mit Quantensensoren extreme Messgenauigkeiten möglich. Ein Beispiel ist die Entwicklung von Atomuhren, die in 30 Milliarden Jahren lediglich eine Sekunde fal ... mehr

    Gegen Plastikmüll im Meer

    Die Leibniz Universität Hannover, die Hochschule Hannover und die Hydra Marine Sciences GmbH wollen zusammen mit weiteren Partnern biobasierte Kunststoffe entwickeln, die sich im Meer biologisch abbauen. Die Forscher erstellen dazu verschiedene Demonstrator-Bauteile und prüfen deren Abbauve ... mehr

    Hellste Quelle verschränkter Photonen

    Wissenschaftler des Leibniz-Instituts für Festkörper- und Werkstoffforschung Dresden (IFW) und der Leibniz Universität Hannover (LUH) haben eine optische Breitbandantenne zur effizienten Aussendung verschränkter Photonen entwickelt. Mit einer Ausbeute von 37 % pro Puls ist es die hellste Qu ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.