25.06.2020 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Verteilung der Kettenlängen von Polymeren gezielt einstellen

Wie mittels der Mischung von zwei Katalysatoren die Dispersität eines Kunststoffs vollständig kontrolliert werden kann

ETH-​Forscher entwickeln eine neue Methode, um kontrolliert Polymere von unterschiedlicher Länge zu erzeugen. Dies ebnet den Weg für neue Klassen von Kunststoffen, die in bisher undenkbaren Anwendungen eingesetzt werden können.

Aus unserem Alltag sind Materialien aus synthetischen Polymeren kaum mehr wegzudenken. Kleider, Autoteile, Computer oder Verpackungen – sie alle bestehen aus Polymermaterialien. Auch in der Natur gibt es eine Reihe von Polymeren, wie etwa die DNA oder Proteine.

Die Architektur von Polymeren ist universell: Sie sind aus Grundbausteinen, die Monomere genannt werden, zusammengesetzt. Bei der Synthese von Polymeren werden Monomere zu langen Ketten verknüpft. Eine einfache Vorstellung davon ist, dass man Glasperlen an einer Schnur aufreiht und so Ketten von unterschiedlicher Länge (und unterschiedlichem Gewicht) erstellt.

Polymerisationsverfahren mit Grenzen

Ein wichtiges industrielles Verfahren, um Polymere zu erzeugen, ist die radikalische Polymerisation (engl. Free Radical Polymerisation, FRP). Damit produziert die chemische Industrie jährlich 200 Millionen Tonnen Polymere verschiedenster Art, wie etwa Polyacryl, Polyvinylchlorid (PVC) oder Polystyrol.

Obwohl diese Herstellungsweise zahlreiche Vorteile hat, so hat sie auch ihre Grenzen. Bei der radikalischen Polymerisation entsteht auf unkontrollierbare Weise ein Gemisch, das aus unzähligen, verschieden langen Polymerspezies besteht, also eine hohe Dispersität aufweist. Die Dispersität ist ein Mass dafür, wie einheitlich respektive uneinheitlich die Länge der Polymerketten in einem Material ist. Die Dispersität bestimmt auch wesentlich, welche Eigenschaften dieses aufweist.

Für alltägliche Polymermaterialien sind Polymere mit sowohl hoher als auch niedriger Dispersität erforderlich. Tatsächlich kann für viele High-​Tech-Anwendungen wie Pharmazeutika oder beim 3D-​Druck, eine hohe Dispersität sogar von Vorteil sein.

Polymere mit neuen Eigenschaften

Wollen Chemiker jedoch gezielt Polymermaterialien mit ganz bestimmten Eigenschaften produzieren, dann müssen sie in erster Linie die Dispersität wunschgemäss einstellen können. So können sie eine grosse Bandbreite von Polymermaterialien erzeugen, die entweder einheitliche Polymerspezies, also eine tiefe Dispersität haben, oder eben hoch dispers sind mit einer hohen Zahl verschieden langer Polymere. Bis anhin war das kaum möglich.

Nun hat aber eine Gruppe von Forschenden um Athina Anastasaki, Professorin für Polymermaterialien am Departement Materialwissenschaft, eine Methode der radikalischen Polymerisation entwickelt, die es erlaubt, die Dispersität von Polymermaterialien systematisch und vollständig zu kontrollieren.

Um die radikalische Polymerisation wenigstens einigermassen kontrollieren zu können, verwendeten Chemikerinnen nur einen Katalysator. Dieser sorgt dafür, dass die entstehenden Polymerketten einheitlich lang werden. Dadurch liess sich die Dispersität insgesamt aber nicht nach Wunsch steuern.

Zwei Katalysatoren einsetzen

Neu setzten die ETH-​Forscher gleichzeitig zwei Katalysatoren von unterschiedlicher Wirkung ein – der eine ist hochaktiv, der andere wenig aktiv. Über das Mischverhältnis der beiden Katalysatoren gelang es ihnen, die Dispersität genau einstellen. Lag es zugunsten des aktiveren, entstanden mehr einheitliche Polymere und damit ein Material von geringer Dispersität. War hingegen der weniger aktive Katalysator in der Mehrheit, dann entstand eine Vielzahl verschiedener Polymermoleküle.

Damit haben Anastasaki und ihre Mitarbeitenden eine Grundlage geschaffen für die Entwicklung neuer Materialien aus Polymeren. Der Prozess ist zudem skalierbar, er funktioniert nicht nur im Labor, sondern lässt sich auch auf grössere Stoffmengen anwenden. Ein weiterer Vorteil dieser Methode: Selbst Polymere von hoher Dispersität können nach erfolgter Polymerisation weiterwachsen, was bisher für unmöglich gehalten wurde.

Die hohe Effizienz und Skalierbarkeit des Ansatzes haben bereits das Interesse der Industrie geweckt. Polymere, die mit dem neuen Verfahren erzeugt werden, könnten in der Medizin, bei Impfstoffen, in Kosmetika oder im 3D-​Druck verwendet werden.

Fakten, Hintergründe, Dossiers
Mehr über ETH Zürich
  • News

    Eine neue Theorie für Halbleiter aus Nanokristallen

    ETH-​Forscher haben die erste theoretische Erklärung dafür geliefert, wie elektrischer Strom in Halbleitern aus Nanokristallen geleitet wird. Dadurch könnten in Zukunft neue Sensoren, Laser oder LEDs für Bildschirme entwickelt werden. Seit einigen Jahren kann man Fernsehapparate kaufen, in ... mehr

    Überraschend starkes und verformbares Silizium

    Forscher der ETH Zürich und der Empa haben gezeigt, dass man aus Silizium kleinste Objekte herstellen kann, die deutlich fester und verformbarer sind als bisher gedacht. Dadurch können etwa Sensoren in Handys kleiner und robuster werden. Seit vor sechzig Jahren der Mosfet-​Transistor erfund ... mehr

    Ein Material mit besonderem Dreh

    In einem Material aus zwei leicht gegeneinander verdrehten, dünnen Kristallschichten haben ETH-​Forscher das Verhalten von stark wechselwirkenden Elektronen untersucht. Dabei fanden sie einige verblüffende Eigenschaften. Viele moderne Technologien beruhen auf speziellen Materialien, wie etw ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr