14.09.2020 - Technische Universität Bergakademie Freiberg

Wenn Kristalle Blitze werfen

Spannung für chemische Reaktionen nutzbar: Neues Modell zur Pyroelektrolyse entwickelt

Die Pyroelektrizität ist ein Phänomen der Physik, bei dem Wärme über bestimmte Kristalle in Strom umgewandelt oder die entstehende Spannung für chemische Reaktionen genutzt werden kann. Während die erste Anwendung heute schon in Geräten wie Bewegungsmeldern angewendet wird, ist die zweite zwar bekannt, aber bisher noch nicht ausreichend theoretisch beschrieben worden. Ein Physikerteam der TU Bergakademie Freiberg hat nun einen Weg gefunden, die Prozesse an pyroelektrischen Oberflächen in einem Modell zu beschreiben und vorherzusagen.

Dr. Mateo de Vivanco nimmt einen Föhn zur Hand und leitet warme Luft auf einen unscheinbar aussehenden kleinen Kristall. Einen Augenblick später, nach circa 5 Sekunden, sind auf der Oberfläche des Kristalls mit bloßem Auge kleine Blitze zu erkennen (s. Foto). Was sich nach Magie anhört, lässt sich mit dem in der Physik hinreichend bekannten Prozess der Pyroelektrizität beschreiben: „Kristalle der Materialklasse Pyroelektrika erzeugen eine elektrische Spannung, wenn sich ihre Temperatur ändert“, klärt der wissenschaftliche Mitarbeiter am Institut für Experimentelle Physik (IEP) der TU Bergakademie Freiberg auf. Der Grund für das Phänomen liegt in den kleinsten positiv und negativ geladenen Teilchen des Kristalls, die bei einer Temperaturänderung zusammen- oder auseinanderdriften. Die Summe dieser Bewegungen entlädt sich als elektrischer Strom an der Oberfläche des Kristalls.

Spannung für chemische Reaktionen nutzbar

Die entstehende Spannung könnte in einem möglichen Anwendungsszenario für chemische Reaktionen genutzt werden. „Besonders interessant ist hierbei die Spaltung von Wasser in Sauerstoff und Wasserstoff, der als Energieträger und in der chemischen Industrie ein gefragtes Gas ist“, so Dr. Mateo de Vivanco. Doch obwohl diese Reaktion schon vor einigen Jahren experimentell nachgewiesen werden konnte, konnten die physikalischen Hintergründe in der internationalen Forschung bisher nur unzureichend beschrieben werden. Hier setzte das Physikerteam an und studierte in einem ersten Schritt vorhandene Modelle, die diese und ähnliche Reaktionen erklären.

"Als Chemiker in einer physikalischen Arbeitsgruppe wollte ich die Ausbeute der Wasserspaltung errechnen. Da dies mit bestehenden Modellen nicht möglich war, überlegten mein Team und ich, welche Faktoren die pyroelektrische Ausbeute einschränken", erklärt der Erstautor der Studie. “Im Vergleich zur direkten Elektrizitätsnutzung hat man bei der Wasserstofferzeugung nämlich Überspannungen unterschiedlicher Natur zu bewältigen, die die Wasserspaltung behindern können", so Dr. Mateo de Vivanco weiter. In mehrjähriger Forschungsarbeit gelang es dem Team auf diese Weise, das nun vorgelegte chemisch-physikalische Modell zu entwickeln, mit dem die Prozesse an pyroelektrischen Oberflächen in chemisch labilen Medien, wie zum Beispiel Wasser, erklärt und vorhergesagt werden können.

Modell ermöglicht Verständnis des komplexen Prozesses

Dank des neuen Modells, welches die Forscher in der August-Ausgabe des Journals „Physical Chemistry Chemical Physics“ vorstellen, ergeben sich neue Möglichkeiten zum Verständnis komplexer elektrochemischer Prozesse an Feststoffoberflächen. So kann damit beispielsweise erstmals die produzierte Menge an Wasserstoff erklärt und vorhergesagt werden. Wird der pyroelektrische Prozess – nicht nur mit Hilfe des neuen Modells – künftig weiterentwickelt, ergibt sich neues Verwendungspotenzial für Forschung und Industrie.

„Insbesondere für die in der aktuellen Diskussion befindliche Entwicklung wesentlicher, auf Wasserstoff basierender Technologien stellen die aktuellen Ergebnisse des Teams einen belastbaren Vorlauf dar“, sagt Prof. Dirk C. Meyer, Institutsdirektor des IEP, in seiner Eigenschaft als Wissenschaftlicher Sprecher des Zentrums für effiziente Hochtemperatur-Stoffwandlung (ZeHS) der TU Bergakademie Freiberg. „Schon seit mehreren Jahren bildet die Beschäftigung mit kristallphysikalischen Kopplungsphänomenen, insbesondere der Pyroelektrizität, einen Schwerpunkt der Arbeiten am IEP“, so Prof. Dirk Meyer.

Fakten, Hintergründe, Dossiers
Mehr über TU Bergakademie Freiberg
  • News

    Klimafreundliches Benzin

    Die TU Freiberg erforscht im Projekt C3 Mobility gemeinsam mit dem Chemieanlagenbau Chemnitz und weiteren Partnern aus der Automobil- und Mineralölindustrie neue Wege in die CO2-neutrale Mobilität. Die STF-Benzinsyntheseanlage der TU Freiberg produzierte die ersten 16.000 Liter des grünen B ... mehr

    Einzigartigen Werkstoff aus marinem Badeschwammskelett

    Wissenschaftler der TU Bergakademie Freiberg haben gemeinsam mit einem internationalen Forscherteam die Struktur eines marinen Badeschwammskeletts entschlüsselt und daraus einen neuartigen dreidimensionalen Verbundwerkstoff für die moderne Werkstoffindustrie entwickelt. Das sogenannte „Graf ... mehr

    Neues Verfahren für naturbasierte Mikropartikel in Kosmetik

    Vor allem im Meer verbreitet sich Mikroplastik immer mehr. Welche Auswirkungen das auf Lebewesen und den Menschen haben kann, ist noch nicht langfristig erforscht. Die Professur Strömungsmechanik und Strömungsmaschinen der Technischen Universität Bergakademie Freiberg will in den kommenden ... mehr