30.11.2020 - Technische Universität Dresden

Mikroschwimmer bewegen sich wie die Motten zum Licht

Beeindruckendes Verhalten von synthetischen Mikroschwimmern untersucht

Die Freigeist-Nachwuchswissenschaftlergruppe der TU Dresden unter Leitung von Chemikerin Dr. Juliane Simmchen hat erstmals ein beeindruckendes Verhalten von synthetischen Mikroschwimmern untersucht: sobald die photokatalytischen Partikel eine beleuchtete Zone verlassen, drehen sie sich selbstständig und schwimmen zurück ins Licht. Diese vielversprechende Beobachtung und ihre Analyse wurde kürzlich in der Fachzeitschrift Soft Matter als „Emerging Investigator“-Artikel veröffentlicht.

TU Dresden Freigeist-Fellow Dr. Juliane Simmchen untersucht in ihrer multidisziplinären Nachwuchsforschergruppe die Bewegung von synthetischen Mikroschwimmern in Flüssigkeiten. Ihr Ziel ist es, dass diese unbelebten Kleinstteilchen aus eigenem Antrieb heraus in eine bestimmte Richtung steuern und somit zukünftig in der Sensorik oder im Biological Cleaning zum Einsatz kommen können. „Eigentlich ist es ein bisschen wie Computerspielen im Labor,“ beschreibt die Chemikerin ihre außergewöhnliche Forschungsarbeit in einem Interview mit der VolkswagenStiftung.

Das Freigeist-Team arbeitet für diese Untersuchungen mit den sogenannten „Janus-Partikeln“. Diese bestehen aus einem Körper aus Titandioxid, der zwei unterschiedlich beschichtete Seiten hat: eine Seite mit einer katalytisch aktiven Schicht aus Nickel und Gold, die andere Seite bleibt unbehandelt. Titandioxid wird als Weißmacher zum Beispiel in Wandfarbe verwendet, es reagiert aber auch mit Licht. Dadurch sind Janus-Partikel photokatalytisch, das bedeutet, sobald Licht auf sie eintrifft, entstehen chemische Reaktionen, die eine Bewegung in Gang setzen.

Nun hat die Gruppe ein äußerst außergewöhnliches Phänomen bei der Bewegung der Janus-Partikel beobachtet und analysiert: sobald die Partikel eine beleuchtete Zone im Mikroskop verlassen, drehen sie von selbst um und schwimmen zurück – ein Verhalten, welches man eigentlich nur von Mikroorganismen kennt. Doch wie kann so eine komplexe Verhaltensweise bei synthetischen Mikroschwimmern ausgelöst werden?

Erstautor Lukas Niese konnte gemeinsam mit Dr. Simmchen nachweisen, dass solange die Partikel im Licht aktiv sind, ihre Schwimmrichtung durch eine Kombination von physiko-chemischen Effekten stabilisiert wird. Sobald kein Licht auf die Partikel einwirkt, erfolgt kein Energieumsatz und die Bewegungsrichtung ist nicht länger stabil. „In diesem Fall“, erklärt Lukas Niese, „setzt die natürliche Wärmebewegung (Brownsche Molekularbewegung) an. Diese lässt die Partikel quasi flippen, und dann schwimmen sie zurück in den belichteten Bereich.“

„Die Tatsache, dass so einfache Effekte, wie die Brownsche Molekularbewegung, zu so komplexen Verhaltensweisen führen können, war schon sehr erstaunlich und beeindruckend, besonders in Hinblick auf Evolution und die Entwicklung von Fähigkeiten. Diese Eigenschaft könnten wir uns für die gezielte Steuerung der Mikroroboter zu Nutze machen. Damit sind Anwendungen denkbar, bei denen die Partikel Schadstoffe aus Flüssigkeiten filtern und abtransportieren oder Medikamente durch den Körper steuern, vielleicht wäre sogar der Transport von Informationen möglich“, erläutert Dr. Simmchen die Bedeutung der Entdeckung.

Fakten, Hintergründe, Dossiers
  • Mikroroboter
Mehr über TU Dresden
  • News

    Ionische Defektland­schaft in Perowskit-Solarzellen enthüllt

    Die Gruppe der sogenannten „Metallhalogenid-Perowskite“ hat als Werkstoffe in den letzten Jahren den Bereich der Photovoltaik revolutioniert. Metallhalogenid-Perowskite sind grob gesagt kristalline Strukturen, die zwar sehr variabel zusammengesetzt sind, aber trotzdem eine sehr ähnliche Kri ... mehr

    Blauer Phosphor: Wie aus einem Halbleiter ein Metall wird

    Blauer Phosphor, ein atomar dünner synthetischer Halbleiter, wird metallisch, sobald man ihn in eine Doppellage überführt. Dies hat ein interdisziplinäres Team um Prof. Thomas Heine von der TU Dresden und Prof. Gabriel Merino von dem mexikanischen Forschungsinstitut Cinvestav Merida herausg ... mehr

    Sauber ohne Chemie und Kraft

    Ein Projektteam der Technischen Universität Dresden und des Fraunhofer-Instituts für Werkstoff- und Strahltechnik IWS strukturierte eine Aluminiumplatte mit einem Laserverfahren so, dass Wassertropfen über die Oberfläche rollen können und dadurch Schmutzpartikel entfernt werden – ganz ohne ... mehr

  • Autoren

    Dr. Torsten Tonn

    Torsten Tonn ist Professor für Transfusionsmedizin an der Medizinischen Fakultät Carl Gustav Carus, Technische Universität Dresden. Er ist ebenfalls Geschäftsführer des DRKBlutspendedienstes Nord-Ost. Vor dieser Stellung leitete er den Bereich für Zell- und Gentherapie des Instituts für Tra ... mehr