22.03.2021 - Kyoto University

"Umgekehrter Prozess" könnte die industrielle Gasabscheidung verbessern

Ein Konstruktionskonzept verändert die Art und Weise, wie Materialien gasförmige Gemische trennen

Eine energieeffizientere Methode verbessert die Art und Weise, wie ein industrielles Gas gereinigt wird, indem der traditionelle Prozess umgekehrt wird. Das Konzept wurde von Wissenschaftlern des Institute for Integrated Cell-Material Sciences (iCeMS) der Universität Kyoto in Japan und Kollegen entwickelt und erfolgreich getestet.

Acetylen ist ein Gas, das in vielen Industrien verwendet wird, unter anderem als Brennstoff beim Schweißen und als chemischer Baustein für Materialien wie Kunststoffe, Farben, Glas und Harze. Um Acetylen zu produzieren, muss es zunächst von Kohlendioxid gereinigt werden. Traditionell geschieht dies, indem das gasförmige Acetylen/Kohlendioxid-Gemisch durch ein Material geleitet wird. Das Kohlendioxid geht dabei eine schwache Wechselwirkung mit dem Material ein und passiert es daher, während das Acetylen stark reagiert und sich an das Material anlagert. Das Problem ist, dass die anschließende Entfernung des Acetylens aus dem Material mehrere energieaufwendige Schritte erfordert.

Wissenschaftler haben nach Möglichkeiten gesucht, diesen Prozess umzukehren, so dass Acetylen das Gas wird, das durch das Material hindurchgeht, und Kohlendioxid zurückgehalten wird. Doch bisher war dies eine große Herausforderung.

"Ein Problem ist, dass beide Gase ähnliche Molekülgrößen, Formen und Siedepunkte haben", erklärt iCeMS-Chemiker Susumu Kitagawa, der die Studie leitete. "Adsorbentien, die Kohlendioxid gegenüber Acetylen bevorzugen, existieren zwar, sind aber selten, insbesondere solche, die bei Raumtemperatur funktionieren."

Kitagawa, der iCeMS-Materialchemiker Ken-ichi Otake und ihre Kollegen verbesserten die Kohlendioxid-Adsorption eines kristallinen Materials, das poröse Koordinationspolymere genannt wird, indem sie dessen Poren modifizierten. Das Team verankerte Aminogruppen in den Porenkanälen von zwei porösen Koordinationspolymeren. Dadurch wurden zusätzliche Stellen geschaffen, an denen Kohlendioxid mit dem Material interagieren und sich anlagern kann. Die zusätzliche Wechselwirkungsstelle veränderte auch die Art und Weise, wie Acetylen an das Material gebunden wurde, so dass weniger Platz für die Anlagerung des Acetylenmoleküls blieb. Dies bedeutete, dass mehr Kohlendioxid und weniger Acetylen adsorbiert wurde, verglichen mit dem gleichen Material ohne die Aminogruppen-Anker.

Diese neu entwickelten Materialien adsorbierten mehr Kohlendioxid und weniger Acetylen im Vergleich zu anderen derzeit verfügbaren Kohlendioxid-Adsorbentien. Sie funktionierten auch gut bei Raumtemperatur und waren über mehrere Zyklen hinweg stabil.

"Diese Strategie der 'entgegengesetzten Wirkung' könnte auf andere Gassysteme anwendbar sein und bietet ein vielversprechendes Designprinzip für poröse Materialien mit hoher Leistung für anspruchsvolle Erkennungs- und Trennsysteme", sagt Kitagawa.

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

Fakten, Hintergründe, Dossiers
Mehr über Kyoto University
  • News

    Zwei zum Preis von einem

    Die chemische Industrie macht jedes Jahr Billionen von Dollar mit der Synthese der unzähligen chemischen Verbindungen, die wir täglich verwenden. Von Arzneimitteln zur Gesunderhaltung bis hin zu Polyester, das in Ihr Hemd eingewebt wird, verwandeln industrielle Verfahren einfache Chemikalie ... mehr

    Eine besondere elementare Magie

    Ein fester Bestandteil jedes naturwissenschaftlichen Klassenzimmers ist das Periodensystem der Elemente, und für viele ist es die erste Einführung in die großen Geheimnisse der Natur. Jetzt haben Physiker der Universität Kyoto eine neue Tabelle vorgestellt, die eine andere Perspektive auf d ... mehr

    MOFs der Zukunft

    Metallorganische Gerüste (MOFs) sind poröse, kristalline Materialien, die Verbindungen in ihren molekularen Hohlräumen einschließen können, was ihnen eine breite Palette von Anwendungen bei der Gasspeicherung und -trennung, der Kohlenstoffabscheidung und der Katalyse chemischer Reaktionen, ... mehr