21.12.2021 - Universität Leipzig

Werden bald aus Kunststoff bestehende Müllberge kleiner?

Suche nach besonders guten Enzymen: Neues Messverfahren soll Entwicklung mehrfach recyclebaren Kunststoffs beschleunigen

Biologisch abbaubare Kunststoffalternativen zu PET stellen bisher ein Nischenprodukt dar und können für viele Anwendungen nur bedingt eingesetzt werden. Neben Strategien zur Plastikmüllvermeidung werden Verfahren zum Recycling immer wichtiger. Wissenschaftler der Universität Leipzig haben nun ein Messverfahren entwickelt, das die Entwicklung mehrfach recyclebaren Kunststoffs beschleunigen soll.

Neben dem energieintensiven chemischen Recycling hat die Wiederverwertung von Polyestern, wie PET, mit Hilfe von Enzymen in den letzten Jahren in der Forschung grosses Interesse geweckt. So wurden bereits mehrere Enzyme, sogenannte Polyester-Hydrolasen, in Bakterien und Pilzen entdeckt, die PET-Sorten gut abbauen können.

Diese Enzyme stellen einen vielversprechenden Ansatz zum umweltschonenden Recycling von PET-Verpackungsmaterialien dar. Durch die enzymatische Aufspaltung in einzelne PET-Bausteine wird im Gegensatz zu jetzigen Recycling-Verfahren der Kunststoff nicht verunreinigt, so dass das Recycling theoretisch wiederholt ohne Qualitätsverlust möglich ist. Für einen industriellen Einsatz müssen diese Enzyme jedoch noch deutlich verbessert werden. Dies ist bisher ein sehr langwieriger und manueller Prozess, bei dem die Enzyme immer wieder verändert und anschließend die neuen Eigenschaften aufwändig getestet werden müssen. So kann es Jahre dauern, bis ein Enzym die gewünschte hohe Recycling-Aktivität besitzt.

Um den Prozess der Entwicklung von neuen maßgeschneiderten Enzymen zum Abbau von Kunststoffen zu beschleunigen, haben Wissenschaftler der Universität Leipzig eine Methode entwickelt, mit der man erstmals die Arbeit der Enzyme zerstörungs- und markierungsfrei in Echtzeit verfolgen und quantifizieren kann, so Projektleiter Dr. Heinz-Georg Jahnke, Leiter der Arbeitsgruppe Molekularbiologisch-biochemische Prozesstechnik an der Universität Leipzig: „Durch den Einsatz der Impedanzspektroskopie können viele Proben gleichzeitig analysiert werden, wie wir in einem ersten Demonstrator erfolgreich zeigen konnten. Auf Basis unserer Arbeit können jetzt automatisierte Messsysteme gebaut werden, mit deren Hilfe Kunststoff-abbauende Enzyme in Hochdurchsatzanalysen schnell und praxisrelevant entwickelt werden. Wir können mit diesem Verfahren Enzyme an Kunststoff-Proben alltäglicher Quellen, wie Einwegverpackungen, testen, also unter realen Bedingungen.“ Das ist entscheidend, da sich die Proben realer Gegenstände häufig deutlich von idealisierten Laborproben hinsichtlich Ihrer Abbaubarkeit unterscheiden.

Die Wissenschaftler erhoffen sich, dass mit Hilfe dieses Verfahrens die Entwicklung mehrfach wiederverwendbarer Kunststoffe in der industriellen Wiederverwertung deutlich beschleunigt wird. Im nächsten Schritt soll die Technologie daher gemeinsam mit Industriepartnern zu einem marktfähigen Produkt entwickelt werden, das in der Forschung und bei Unternehmen zur Suche nach besonders guten Enzymen zum Abbau von Kunststoffen oder leicht zu recycelbaren neuen Kunststoffen angewendet werden kann.

Das Verfahren wurde im Rahmen des interfakultären Transfer-Zentrums für bioaktive Materie b-ACTmatter entwickelt, welches aus dem Bundesprogramm „Stärkung der Transformationsdynamik und Aufbruch in den Revieren und an den Kohlekraftwerkstandorten – STARK“ gefördert wird. Ziel des b-ACTmatter ist die Entwicklung neuer Materialien und Technologien, die zu einer innovativen, nachhaltigen und kreislauffähigen Entwicklung der Wirtschaft beitragen. „Insgesamt ist dies ein wichtiger Schritt, der die Schwelle für die Anwendung neuer Enzyme zum Abbau von Kunststoffen oder sogar Kunststoffgemischen deutlich senken kann", erklärt Prof. Dr. Frank Cichos, einer der Leiter des b-ACTmatter. „Wir wollen mit dieser Technologie aus Sachsen Beiträge zur Lösung großer Umweltprobleme und zur nachhaltigen Nutzung von Kunstoffen und einer effektiven Kreislaufwirtschaft leisten“, betont er.

Fakten, Hintergründe, Dossiers
Mehr über Uni Leipzig
  • News

    „Faule“ und „fleißige“ Zellen in der Biokatalyse identifizieren

    Die Umwandlung von chemischen Verbindungen durch lebende Zellen – sogenannte Ganzzellbiokatalysatoren – ist ein schon länger bekannter Prozess, der zu einer Fülle an interessanten Erzeugnissen geführt hat. Dies wird unter anderem bei traditionellen Prozessen wie dem Brotbacken oder Bierbrau ... mehr

    Neu entdecktes Enzym zersetzt PET-Kunststoff in Rekordzeit

    Plastikflaschen, Obstschalen, Folien: Diese leichten Verpackungen aus PET-Kunststoff werden zum Problem, wenn sie nicht recycelt werden. Wissenschaftler:innen von der Universität Leipzig haben nun ein hocheffizientes Enzym entdeckt, das PET in Rekordzeit abbaut. Mit dem Enzym PHL7, das die ... mehr

    Stabil, effizient, umweltschonend: Forschende entwickeln vielversprechenden Wärmespeicher

    Ein neues Material zur Wärmespeicherung könnte dabei helfen, Häuser energetisch deutlich zu verbessern. Entwickelt wurde es von Forschenden der Martin-Luther-Universität Halle-Wittenberg (MLU) und der Universität Leipzig. Mit ihm lässt sich überschüssige Wärme speichern und bei Bedarf wiede ... mehr

  • Videos

    "Fingerabdruck" diffuser Protonen entschlüsselt

    Der Grotthuß-Mechanismus, benannt nach dem Leipziger Naturwissenschaftler Freiherr Theodor von Grotthuß (1785-1822), erklärt qualitativ den Transport von elektrischen Ladungen in wässrigen Lösungen. Dieser spielt in alltäglichen biochemischen Prozessen, zum Beispiel der Signalübertragung in ... mehr

  • q&more Artikel

    Zellkultur in der dritten Dimension

    Aussagen zur toxikologischen Wirkung von Chemikalien und pharmazeutischen Erzeugnissen müssen vor Markteinführung erfasst werden. Dabei spielten bis heute Tierversuche eine wichtige Rolle, diese gilt es jedoch zu vermeiden und die Tests stattdessen in organoiden Zellkultursystemen mit hoher ... mehr

  • Autoren

    Dr. Peggy Stock

    Peggy Stock, Jahrgang 1976, studierte an der Martin-Luther-Universität Halle-Wittenberg Biologie und promovierte im Jahr 2005. Seit ihrer Rückkehr von einem Forschungsaufenthalt an der University of Pittsburgh (USA) arbeitet sie in der Arbeitsgruppe Angewandte Molekulare Hepatologie um Prof ... mehr

    Dr. Katja Schellenberg

    Jg. 1984, absolvierte ihren Bachelor of Science in Molekularer Biotechnologie an der Technischen Univer­sität Dresden, bevor sie 2009 im internationalen Studiengang „Molecular Medicine“ der Charité Berlin mit dem Master of Science graduierte. Gefördert durch ein Charité-Stipendium erfolgte ... mehr