02.05.2022 - Universität Bayreuth

Nanoplastikteilchen suchen Anschluss

Polyethylen-Abbau in der Umwelt

Weltweit besteht fast ein Drittel der Kunststoffabfälle aus Polyethylen, einem preiswerten und leicht zu verarbeitenden Kunststoff. Ein interdisziplinäres Team der Universität Bayreuth hat jetzt erstmals den fortschreitenden Abbau von Polyethylen in der Umwelt erforscht. Dieser Prozess führt zu einer Fragmentierung in immer kleinere Partikel. Dennoch sind vereinzelte Nanoplastikteilchen kaum in der Umwelt zu finden. Der Grund: Diese Zerfallsprodukte bleiben nicht gern allein. Sie hängen sich rasch an größere kolloidale Systeme an, die in der Umwelt natürlicherweise vorkommen. In der Zeitschrift „Science of the Total Environment“ stellen die Forscher*innen ihre Ergebnisse vor.

Polyethylen ist ein Kunststoff, der in verschiedenen molekularen Strukturen vorkommt. Polyethylen niedriger Dichte (low-density polyethylene, LDPE) wird häufig für Verpackungen alltäglicher Konsumgüter, beispielsweise im Lebensmittelbereich, verwendet und ist infolge der steigenden Nachfrage einer der am häufigsten vorkommenden Polymere weltweit. Bislang gab es nur Schätzungen darüber, wie dieser weit verbreitete Kunststoff abgebaut wird, nachdem er als Abfall in die Umwelt gelangt ist. Ein Forschungsteam des Sonderforschungsbereichs „Mikroplastik“ an der Universität Bayreuth ist dieser Frage jetzt erstmals systematisch nachgegangen. Die Wissenschaftler*innen haben dafür eine neuartige, technisch anspruchsvolle Versuchsanordnung entwickelt. Diese ermöglicht es, zwei bekannte und in der Umwelt miteinander verknüpfte Prozesse des Kunststoffabbaus unabhängig voneinander im Labor zu simulieren: die Photooxidation, bei der sich die langen Polyethylen-Ketten unter Lichteinfluss schrittweise in kleinere, potenziell wasserlöslichere Moleküle aufspalten, und die zunehmende Fragmentierung durch mechanische Beanspruchung. Auf dieser Basis war es möglich, detaillierte Einblicke in die komplexen physikalischen und chemischen Prozesse des Abbaus von LDPE zu gewinnen.

Für Untersuchungen, die sich mit den möglichen Auswirkungen der Umweltbelastung durch Polyethylen befassen, ist vor allem das letzte Stadium des LDPE-Abbaus von großem Interesse. Wie die Forscher*innen herausgefunden haben, endet dieser Abbau nicht bei der Zersetzung des in die Umwelt gelangten Verpackungsmaterials in viele Mikro- und Nanoplastik-Partikel, die einen hohen Kristallinitätsgrad aufweisen. Denn diese winzigen Partikel haben eine starke Neigung zur Aggregation: Sie hängen sich rasch an größere kolloidale Systeme an, die aus organischen oder anorganischen Molekülen bestehen und Teil des Stoffkreislaufs in der Umwelt sind. Beispiele für solche kolloidalen Systeme sind Tonminerale, Huminsäuren, Polysacharide oder auch biologische Partikel aus Bakterien und Pilzen.

„Dieser Prozess der Aggregation verhindert, dass einzelne, durch Polyethylen-Abbau entstandene Nanopartikel frei in der Umwelt verfügbar sind und mit Tieren und Pflanzen wechselwirken. Aber das bedeutet keine Entwarnung. Größere Aggregate, die am Stoffkreislauf in der Umwelt teilhaben und Nanoplastik enthalten, werden oft von lebenden Organismen aufgenommen. So kann Nanoplastik schließlich in die Nahrungskette gelangen“, sagt Teresa Menzel, eine der drei Erstautorinnen der neuen Studie und Doktorandin im Bereich Polymere Werkstoffe.

Für die Identifizierung der Abbauprodukte, die beim Zerfall von Polyethylen entstehen, nutzten die Forscher*innen eine Methode, die bisher in der Mikroplastik-Forschung nicht sehr häufig verwendet wurde: die Kreuzpolarisation mit multiCP-Sequenzen bei der Festkörper-NMR-Spektroskopie. „Dieses Verfahren ermöglicht uns sogar eine Quantifizierung der Abbauprodukte, die durch die Photooxidation entstehen“, sagt Mitautorin Anika Mauel, Doktorandin im Bereich Anorganische Chemie.

Die Bayreuther Forscher*innen haben darüber hinaus entdeckt, dass der Abbau und Zerfall von Polyethylen auch zur Entstehung von Peroxiden führt. „Peroxide stehen seit langem im Verdacht, dass sie zytotoxisch sind, also eine giftige Wirkung auf lebende Zellen haben. Auch in dieser Hinsicht stellt die Degradation von LDPE eine potenzielle Bedrohung für natürliche Ökosysteme dar. Diese Zusammenhänge müssen künftig noch genauer untersucht werden“, ergänzt Mitautorin Nora Meides, Doktorandin im Bereich Makromolekulare Chemie.

Die detaillierte Analyse der am Abbau von Polyethylen beteiligten chemischen und physikalischen Prozesse wäre nicht möglich gewesen ohne die interdisziplinäre Vernetzung und den koordinierten Einsatz modernster Forschungstechnologien auf dem Bayreuther Campus. Dazu zählen insbesondere die Rasterelektronenmikroskopie (SEM), die energiedispersive Röntgenspektroskopie (EDS), die Röntgendiffraktometrie (XRD), die NMR-Spektroskopie, die Fourier-Transformations-Infrarotspektroskopie (FTIR) und die Differential-Scanning-Kalorimetrie (DSC).

Fakten, Hintergründe, Dossiers
Mehr über Uni Bayreuth
  • News

    Neues Verfahren ermöglicht erstmals Materialforschung im Terapascal-Bereich

    Davon konnte Jules Verne nicht einmal träumen: Ein Forschungsteam der Universität Bayreuth hat gemeinsam mit internationalen Partnern die Grenzen der Hochdruck- und Hochtemperaturforschung in kosmische Dimensionen ausgeweitet. Erstmals ist es gelungen, Materialien unter Kompressionsdrücken ... mehr

    Atomare Terahertz-Schwingungen lösen das Rätsel ultrakurzer Solitonen-Moleküle

    Stabile Pakete von Lichtwellen – sogenannte optische Solitonen – werden in Ultrakurzpuls-Lasern als eine Kette von Lichtblitzen ausgestrahlt. Diese Solitonen verbinden sich oft zu Paaren mit sehr kurzen zeitlichen Abständen. Anhand von atomaren Schwingungen im Terahertz-Bereich haben Forsch ... mehr

    Bayreuther Forscher entwickeln Katalysator für die nachhaltige Herstellung wichtiger Ausgangsstoffe

    Die aus Kohlenstoff und Wasserstoff bestehenden alpha-Olefine sind die wichtigsten Ausgangsstoffe der chemischen Industrie. Forscher der Universität Bayreuth stellen in „Science“ eine Entdeckung vor, die ungeahnte Perspektiven für das Design und die selektive sowie nachhaltige Herstellung d ... mehr

  • q&more Artikel

    Authentische Lebensmittel

    Authentische Lebensmittel erfreuen sich bei Konsumenten zunehmender Beliebtheit. Ein regionales, sortenreines und/oder speziell hergestelltes Produkt ist in einem stark industrialisierten Markt in steigendem Maß ein Garant für mehr Wertschöpfung. Gerade im Premiumsegment lassen sich durch ö ... mehr

    Mehr als Honig?

    Seit Jahrtausenden ist „Honig“ ein Inbegriff für ein naturbelassenes und gesundes Lebensmittel. Dementsprechend erfreut sich Honig auch bei Konsumenten steter Beliebtheit – gerade in Zeiten, in denen biologische Lebensmittel und eine gesunde Lebensweise aktueller sind als je zuvor. mehr

    Extraportion Zink

    Mächtige Unterarme, Pfeife im Mund, Matrosenhut. In Sekundenschnelle ist die Dose Spinat geöffnet und ­geleert. Mit nun übermenschlicher Kraft geht es in die nächste Rauferei. So kennen wir Popeye, den Seemann. Das Geheimnis seiner Stärke ist der hohe Eisengehalt von Spinat. Mit dieser Vors ... mehr

  • Autoren

    Dr. Christopher Igel

    Jg. 1990, absolvierte von 2009 bis 2013 sein Bachelor-Studium in Biochemie an der Universität Bayreuth. Die Bachelorarbeit zum Thema „Honiganalytik mittels NMR“ fertigte er am Forschungszentrum BIOmac unter der Leitung von Prof. Dr. Schwarzinger an. mehr

    Wolfrat Bachert

    Jg. 1987, begann zunächst ein Studium des Maschinen­baustudium an der TU Dresden, eher er 2009 zum Studium der Biologie an die ­Universität Bayreuth wechselte, wo er 2013 am Lehrstuhl für Biochemie unter der Leitung von Prof. Dr. Wulf Blankenfeldt seine Bachelorarbeit zum Thema „Charakteri­ ... mehr

    Christopher Synatschke

    Christopher Synatschke hat an der Universität Bayreuth und der University of New South Wales, Sydney Chemie mit Schwerpunkt Polymerforschung studiert und ist seit 2009 Doktorand in der Arbeitsgruppe von Prof. Axel H. E. Müller an der Universität Bayreuth. Seine Forschungsinteressen sind die ... mehr