13.05.2022 - Universität Bayreuth

Neues Verfahren ermöglicht erstmals Materialforschung im Terapascal-Bereich

Reisen zum Mittelpunkt des Uranus

Davon konnte Jules Verne nicht einmal träumen: Ein Forschungsteam der Universität Bayreuth hat gemeinsam mit internationalen Partnern die Grenzen der Hochdruck- und Hochtemperaturforschung in kosmische Dimensionen ausgeweitet. Erstmals ist es gelungen, Materialien unter Kompressionsdrücken von mehr als einem Terapascal (1.000 Gigapascal) zu erzeugen und zeitgleich zu analysieren. Solche extrem hohen Drücke herrschen beispielsweise im Mittelpunkt des Planeten Uranus, sie sind mehr als dreimal so hoch wie der Druck im Zentrum der Erde. In „Nature“ stellen die Forscher*innen das von ihnen entwickelte Verfahren zur Synthese und Strukturanalyse neuartiger Materialien vor.

Theoretische Modelle sagen sehr ungewöhnliche Strukturen und Eigenschaften von Materialien unter extremen Druck-Temperatur-Bedingungen voraus. Doch bisher ließen sich diese Vorhersagen nicht in Experimenten bei Kompressionsdrücken von mehr als 200 Gigapascal verifizieren. Zum einen sind komplexe technische Voraussetzungen nötig, um Materialproben derart extremen Drücken auszusetzen, zum anderen fehlten ausgereifte Methoden für zeitgleiche störungsfreie Strukturanalysen. Die in „Nature“ veröffentlichten Experimente eröffnen daher völlig neue Dimensionen für die Hochdruckkristallographie: Im Labor können jetzt Materialien erzeugt und erforscht werden, die – wenn überhaupt – in den Weiten des Universums nur unter extrem hohen Drücken existieren.

„Das von uns entwickelte Verfahren versetzt uns erstmals in die Lage, neue Materialstrukturen im Terapascal-Bereich zu synthetisieren und in situ – das heißt: noch während des laufenden Experiments – zu analysieren. Auf diese Weise lernen wir bisher unbekannte Zustände, Eigenschaften und Strukturen von Kristallen kennen und können generell unser Verständnis von Materie bedeutend vertiefen. Für die Erforschung terrestrischer Planeten und die Synthese von Funktionsmaterialien, die in innovativen Technologien zur Anwendung kommen, lassen sich dadurch wertvolle Einsichten gewinnen“, erklärt Prof. Dr. Leonid Dubrovinsky vom Bayerischen Geoinstitut (BGI) der Universität Bayreuth, der Erstautor der Veröffentlichung.

In ihrer neuen Studie zeigen die Forscher*innen, wie sie mit Hilfe des jetzt entdeckten Verfahrens neuartige Rheniumverbindungen erzeugt und in situ sichtbar gemacht haben. Es handelt sich dabei um ein neuartiges Rhenium-Nitrid (Re₇N₃) und eine Rhenium-Stickstoff-Legierung. In einer mit Laserstrahlen beheizten zweistufigen Diamantstempelzelle wurden diese Materialien unter extremen Drücken synthetisiert. Die Synchrotron-Einkristall-Röntgenbeugung ermöglichte eine vollständige chemische und strukturelle Charakterisierung. „Vor zweieinhalb Jahren waren wir in Bayreuth sehr überrascht, als wir auf der Basis von Rhenium und Stickstoff einen superharten metallischen Leiter herstellen konnten, der selbst extrem hohen Drücken standhält. Wenn wir künftig die Hochdruckkristallographie sogar im Terapascal-Bereich anwenden, werden wir in dieser Richtung möglicherweise weitere überraschende Entdeckungen machen. Die Türen für eine kreative Materialforschung, die unter extremen Drücken unerwartete Strukturen erzeugt und sichtbar macht, stehen jetzt weit offen“, sagt die Hauptautorin der Studie, Prof. Dr. Natalia Dubrovinskaia vom Labor für Kristallographie der Universität Bayreuth.

An den in „Nature“ veröffentlichten Forschungsarbeiten waren zusammen mit dem Bayerischen Geoinstitut (BGI) und dem Labor für Kristallographie der Universität Bayreuth zahlreiche weitere Forschungspartner beteiligt: die Universität zu Köln, die Universität Linköping, das Deutsche Elektronen-Synchrotron DESY in Hamburg, die European Synchrotron Radiation Facility in Grenoble sowie das Center for Advanced Radiation Sources an der Universität Chicago.

Fakten, Hintergründe, Dossiers
  • Materialforschung
  • Hochdruckkristallographie
  • Kristallografie
Mehr über Uni Bayreuth
  • News

    Auf dem Weg zu leistungsstarken Festkörperbatterien

    Betriebssicherheit, Langlebigkeit und hohe Energiedichte: In diesen Punkten sind Festkörperbatterien vom Prinzip her den herkömmlichen Lithium-Ionen-Batterien mit Flüssigelektrolyten überlegen. Ein großes Problem, das industriellen Anwendungen – etwa im Bereich der Elektromobilität – entgeg ... mehr

    Neue Studie zur Optimierung mikrobieller Brennstoffzellen

    Mikrobielle Brennstoffzellen werden heute hauptsächlich in Forschungslaboren für die Erzeugung von elektrischem Strom eingesetzt. Damit künftig auch industrielle Anwendungen in Betracht kommen, müssen die Brennstoffzellen dahin weiterentwickelt werden, dass sie gleichbleibend höhere Stromme ... mehr

    Internationales Forschungsteam erzeugt bisher unbekannte Stickstoffverbindungen

    Nichtmetallische Nitride sind Verbindungen, in denen Stickstoff und nicht-metallische Elemente durch kovalente Bindungen verknüpft sind. Wegen ihrer technologisch interessanten Eigenschaften sind sie immer mehr in den Fokus der Materialforschung gerückt. Ein internationales Team mit Forsche ... mehr

  • q&more Artikel

    Authentische Lebensmittel

    Authentische Lebensmittel erfreuen sich bei Konsumenten zunehmender Beliebtheit. Ein regionales, sortenreines und/oder speziell hergestelltes Produkt ist in einem stark industrialisierten Markt in steigendem Maß ein Garant für mehr Wertschöpfung. Gerade im Premiumsegment lassen sich durch ö ... mehr

    Mehr als Honig?

    Seit Jahrtausenden ist „Honig“ ein Inbegriff für ein naturbelassenes und gesundes Lebensmittel. Dementsprechend erfreut sich Honig auch bei Konsumenten steter Beliebtheit – gerade in Zeiten, in denen biologische Lebensmittel und eine gesunde Lebensweise aktueller sind als je zuvor. mehr

    Extraportion Zink

    Mächtige Unterarme, Pfeife im Mund, Matrosenhut. In Sekundenschnelle ist die Dose Spinat geöffnet und ­geleert. Mit nun übermenschlicher Kraft geht es in die nächste Rauferei. So kennen wir Popeye, den Seemann. Das Geheimnis seiner Stärke ist der hohe Eisengehalt von Spinat. Mit dieser Vors ... mehr

  • Autoren

    Dr. Christopher Igel

    Jg. 1990, absolvierte von 2009 bis 2013 sein Bachelor-Studium in Biochemie an der Universität Bayreuth. Die Bachelorarbeit zum Thema „Honiganalytik mittels NMR“ fertigte er am Forschungszentrum BIOmac unter der Leitung von Prof. Dr. Schwarzinger an. mehr

    Wolfrat Bachert

    Jg. 1987, begann zunächst ein Studium des Maschinen­baustudium an der TU Dresden, eher er 2009 zum Studium der Biologie an die ­Universität Bayreuth wechselte, wo er 2013 am Lehrstuhl für Biochemie unter der Leitung von Prof. Dr. Wulf Blankenfeldt seine Bachelorarbeit zum Thema „Charakteri­ ... mehr

    Christopher Synatschke

    Christopher Synatschke hat an der Universität Bayreuth und der University of New South Wales, Sydney Chemie mit Schwerpunkt Polymerforschung studiert und ist seit 2009 Doktorand in der Arbeitsgruppe von Prof. Axel H. E. Müller an der Universität Bayreuth. Seine Forschungsinteressen sind die ... mehr