05.07.2022 - Westfälische Wilhelms-Universität Münster

Auf dem Weg zu zellartigen Materialien

Zusammenspiel von molekularen Maschinen in metallorganischen Gerüstverbindungen entschlüsselt

Molekulare Maschinen steuern eine Vielzahl grundlegender Prozesse in der Natur. Eingebettet in eine zelluläre Umgebung, spielen sie eine zentrale Rolle beim intra- und interzellulären Transport von Molekülen sowie bei der Muskelkontraktion von Menschen und Tieren. Für die Funktion des gesamten Organismus ist meist eine wohldefinierte Orientierung und Anordnung der molekularen Maschinen essenziell. Zum Beispiel ermöglicht die spezifische Einbettung von Motorproteinen, welche eine Klasse von biomolekularen Maschinen bilden, ein dynamisches Zusammenspiel der unzähligen Proteine. Dadurch wird die Bewegung auf molekularer Ebene verstärkt und über verschiedene Größenordnungen hinweg bis zur makroskopischen Ebene übertragen.

Inspiriert von diesen biologischen Systemen, ist die Entwicklung von zellartigen Materialien, basierend auf künstlichen molekularen Maschinen ein aktuelles Forschungsfeld. Um die molekulare Kooperativität dieser Maschinen für die Anwendung in der Materialwissenschaft oder der Medizin zu nutzen, ist ein detailliertes Verständnis sowohl der molekularen Einbettung in eine Matrix als auch der intermolekularen Wechselwirkungen entscheidend. Elena Kolodzeiski und Dr. Saeed Amirjalayer vom Physikalischen Institut der Westfälischen Wilhelms-Universität (WWU) Münster ist es erstmals gelungen, das dynamische Zusammenspiel einer Klasse von künstlichen molekularen Maschinen – den sogenannten molekularen Shuttles – mithilfe von molekular-dynamischen Simulationen aufzudecken. Die Studie ist jetzt in der Zeitschrift „Science Advances“ erschienen.

Molekulare Shuttles sind aus hantelförmigen und ringförmigen Molekülen aufgebaut, die durch mechanische Bindungen miteinander verknüpft sind. „Diese mechanische Verknüpfung auf molekularer Ebene führt dazu, dass sich der Ring entlang der Achse von einer Seite auf die andere bewegen kann. Diese gezielte Pendelbewegung wurde bereits genutzt, um molekulare Maschinen zu entwickeln“, erklärt Studienleiter Saeed Amirjalayer. Basierend hierauf arbeiten Wissenschaftler weltweit an einer gezielten Nutzung dieser molekularen Maschinen in Funktionsmaterialien. Metallorganische Gerüstverbindungen, welche modular aus organischen und anorganischen Bausteinen aufgebaut sind, erweisen sich als eine vielversprechende Matrix, um diese mechanisch verzahnten Moleküle in zellartigen Strukturen einzubetten. Obwohl in den vergangenen Jahren eine Reihe dieser Systeme synthetisiert wurde, fehlt meist ein grundlegendes Verständnis der dynamischen Prozesse in diesen Materialien.

„Unsere Studie liefert einen detaillierten Einblick darin, wie die eingebetteten Maschinen funktionieren und zusammenspielen. Gleichzeitig konnten wir Parameter ableiten, die es ermöglichen, die Bewegungsart der molekularen Shuttles innerhalb der metallorganischen Gerüstverbindungen zu variieren“, erklärt Erstautorin Elena Kolodzeiski. Die gezielte Steuerung der Dynamik biete vielsprechende Möglichkeiten, um die Transporteigenschaften von Molekülen in Membranen zu beeinflussen oder katalytische Prozesse abzustimmen. Die Forscher hoffen, dass ihre Simulationen die Grundlage für neuartige Materialien in der katalytischen und medizinischen Anwendung bilden.

Fakten, Hintergründe, Dossiers
Mehr über WWU Münster
  • News

    Neuer Weg zur Herstellung wichtiger Molekülgruppe

    Zu den häufigsten Strukturen, die für die Funktion von biologisch aktiven Molekülen, Naturprodukten und Arzneimitteln relevant sind, gehören sogenannte vizinale Diamine – insbesondere unsymmetrisch aufgebaute Diamine. Vizinale Diamine enthalten zwei für die Stoffeigenschaften verantwortlich ... mehr

    Forscher der Uni Münster lösen Problem der organischen Chemie

    In landwirtschaftlich genutzten Chemikalien sowie in Pharmazeutika und in verschiedenen Materialien kommen häufig Pyridine als sogenannte funktionelle Einheiten vor, die die chemischen Eigenschaften der Stoffe maßgeblich bestimmen. Pyridine gehören zu den ringförmigen Kohlenstoff-Wasserstof ... mehr

    Forscher zeigen: Chirale Oxid-Katalysatoren richten Elektronenspin aus

    Die Kontrolle des Eigendrehimpulses (Spins) von Elektronen eröffnet künftige Anwendungsszenarien in der spinbasierten Elektronik (Spintronik), beispielsweise zur Informationsverarbeitung. Außerdem bietet sie neue Möglichkeiten, die Selektivität und Effizienz von chemischen Reaktionen zu kon ... mehr

  • q&more Artikel

    Löwenzahn als neue Rohstoffquelle für Naturkautschuk

    Mehr als 12.500 Pflanzen produzieren Latex, einen farblosen bis weißen Milchsaft, der unter anderem Naturkautschuk enthält. mehr

  • Autoren

    Prof. Dr. Dirk Prüfer

    Dirk Prüfer, Jahrgang 1963, studierte Biologie an der Universität zu Köln und promovierte am Max-Planck-Institut für Pflanzenzüchtung. Seine Habilitation legte er im Jahr 2004 an der Justus-Liebig-Universität Gießen ab. Seit 2004 ist er Professor für molekulare Pflanzenbiotechnologie am Ins ... mehr

    Prof. Dr. Joachim Jose

    Joachim Jose, geb. 1961, studierte Biologie an der Universität Saarbrücken, wo er promovierte. Die Habilitation erfolgte am Institut für Pharma­zeutische und Medizinische Chemie der Universität des Saarlandes. Von 2004 bis 2011 war Professor für Bioanalytik (C3) an der Heinrich-Heine-Univer ... mehr