Licht steuert strukturelle Umwandlung von chiralen Molekülen

Diese Umwandlung ist beispielsweise für die Herstellung von Medikamenten relevant

25.08.2023 - Deutschland
AG Gilmour

Ebenso wie unsere Hände verhalten sich auch bestimmte organische Moleküle zueinander wie Bild und Spiegelbild – ein Phänomen, das von Chemikern als „Chiralität“, zu Deutsch „Händigkeit“, bezeichnet wird.

Chemiker der Universität Münster haben ein neues Konzept entwickelt, in dem ein Gemisch aus zwei spiegelbildlichen Formen des gleichen organischen Moleküls in eine reine Form umgewandelt wird. Dazu nutzen sie Licht als externe Energiequelle. Diese Umwandlung ist beispielsweise für die Herstellung von Medikamenten relevant. Die Studie ist in der Zeitschrift „Nature“ veröffentlicht.

Ebenso wie unsere Hände verhalten sich auch bestimmte organische Moleküle zueinander wie Bild und Spiegelbild – ein Phänomen, das von Chemikern als „Chiralität“, zu Deutsch „Händigkeit“, bezeichnet wird. Beide spiegelbildlichen Formen des gleichen Moleküls, genannt Enantiomere, besitzen oft unterschiedliche biologische Eigenschaften. Für die Herstellung von Medikamenten beispielsweise ist daher meist nur eine der Formen relevant. Chemische Herstellungsmethoden bringen jedoch häufig eine 1:1-Mischung beider Formen mit entgegengesetzter räumlicher Ausrichtung hervor. Deshalb ist die selektive Umwandlung dieses Gemischs in eine einzelne ausgewählte Form von großer Bedeutung. Ein Team des Organisch-Chemischen Instituts und des Center for Multiscale Theory and Computation der Universität Münster unter der Leitung von Prof. Dr. Ryan Gilmour und Prof. Dr. Johannes Neugebauer hat nun ein neues Konzept entwickelt, in dem Licht als externe Energiequelle genutzt wird, um eine solche Umwandlung zu ermöglichen. Die Studie ist jetzt in der Zeitschrift „Nature“ veröffentlicht.

Die selektive Bildung der spiegelbildlichen Formen erfolgt durch einen Aluminiumkomplex, der als Katalysator eingesetzt und durch Licht aktiviert wird. Der Reaktionsablauf wurde durch experimentell und durch theoretische Rechnungen untersucht. Dabei trugen die ausführlichen computerbasierten Analysen maßgeblich zum Verständnis der zugrundeliegenden Prozesse bei. Das neue Konzept überzeugt durch einfache und breite Anwendbarkeit, da es sich bei dem verwendeten Aluminiumkomplex um einen weit verbreiteten Katalysator für herkömmliche chemische Reaktionen ohne Licht handelt. Die Übertragung auf Licht-vermittelte Reaktionen soll nun eine Vielzahl an neuen Reaktionen unter räumlicher Kontrolle ermöglichen.

Gute räumliche Kontrolle in Licht-vermittelten Reaktionen zu erreichen, ist eine der großen Herausforderungen in der organischen Chemie. Häufig werden dazu zwei verschiedene Katalysatoren in einer Reaktion verwendet: ein Photokatalysator, der die Reaktion initiiert, agiert Hand in Hand mit einem zweiten Katalysator, der die räumliche Anordnung der Moleküle kontrolliert. Die erfolgreiche Vereinigung beider Funktionen in eine einzelne Katalysatorstruktur gelang Wissenschaftlern bisher nur durch Einbringung maßgeschneiderter Erkennungsmotive in Katalysator und Substrat. In dieser Arbeit stellen die Arbeitsgruppen einen Katalysator vor, der Reaktivität sowie Selektivität reguliert und an simple Ketone, eine weit verbreitete strukturelle Gruppe, bindet. Außerdem wird Aluminium als Element mit großem natürlichem Vorkommen verwendet, anstelle von teuren Übergangsmetallen, die sonst üblich sind für Photokatalysatoren.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!