Thianthrenium-Chemie macht aus einer Aminosäure einen vielseitigen Reaktionspartner

Mehr Optionen bei weniger Syntheseschritten: Nützliches und vielseitiges Werkzeug für die chemische Biologie

03.01.2024
Computer-generated image

Symbolbild

Proteine chemisch zu verändern spielt eine wesentliche Rolle, wenn man biologische Prozesse untersuchen beziehungsweise die Struktur der Proteine selbst besser verstehen möchte. Um ein Protein zu diversifizieren, also mehrere Varianten herzustellen, greifen Chemikerinnen und Chemiker auf Reaktionen zurück, welche selektiv auf eine bestimmte Aminosäure, also auf einen Baustein der Proteine, abzielen. Cystein ist ein bekanntes Beispiel für solch eine Aminosäure und konnte bislang auf zwei Arten modifiziert werden. Erstens besteht die Möglichkeit, für jede gewünschte Modifikation die benötigte spezifische elektrophile Reagenz jeweils einzeln zu synthetisieren. Das kann zum Beispiel eine Fluoreszenz sein, welche man an ein Protein andocken lässt, um es in komplexen biologischen Gemischen besser verfolgen zu können. Dieses Verfahren spielt bei der Bildgebung in der Medizin eine wichtige Rolle.

Der zweite Weg macht die Aminosäure, unser Cystein selbst, zu einer Art chemischen „Dreh- und Angelpunkt“, der dann diversifiziert werden kann. Bislang wurde dies in mehrstufigen Synthesen durchgeführt. Dieses Verfahren mit mehreren Schritten hat den entscheidenden Nachteil, dass der „Angelpunkt“ nicht direkt in Gegenwart von externen Reagenzien hergestellt werden kann, die wiederum für eine Diversifizierung erforderlich wären. Die Synthese ist also mit einem gewissen Aufwand verbunden. Und nicht nur das. Das beschriebene Manko geht häufig mit einer eingeschränkten Auswahl an Reagenzien für die Funktionalisierung einher. Denn unser „Angelpunkt“ Cystein muss während der Reinigungsprozesse zwischen den Syntheseschritten in Lösung bleiben und weist daher von Natur aus eine geringere Reaktivität auf. Mit anderen Worten: Man spart im Vergleich zur ersten Methode zwar Arbeitsschritte und somit Zeit, ist anschließend in der Anzahl der Optionen jedoch eingeschränkt.

Eine neue Technik aus der Arbeitsgruppe von Tobias Ritter, Direktor am Max-Planck-Institut für Kohlenforschung, zeigt nun einen alternativen Weg auf. Dieser ist besonders spannend, weil er die Einführung eines hochreaktiven Zwischenprodukts, unseres „Angelpunkts“, auf der Basis eines einzigen Elektrophils ermöglicht – und das in einem einzigen Syntheseschritt. Darüber hinaus ermöglicht diese Methode eine breite Diversifizierung des Zwischenprodukts auch in Gegenwart von externen Reagenzien.

Wie genau funktioniert das? Die Gruppe um Tobias Ritter hat einen Weg gefunden, Cystein mit Hilfe von Vinylthianthreniumsalzen in situ in ein hochreaktives Episulfonium-Elektrophil umzuwandeln. Dieser Ansatz ermöglicht es, das Cystein mit verschiedenen anderen externen Nukleophilen zu verbinden, ohne dass zusätzliche Schritte erforderlich sind. Die Methode erlaubt es den Wissenschaftlern, verschiedene biorelevante funktionelle Gruppen an Proteine zu binden, indem sie eine kurze und stabile Ethylenbindung sehr nahe an der Proteinoberfläche herstellen. Damit bietet sich eine neue, attraktive Möglichkeit, Markierungen oder Funktionalitäten hinzuzufügen, welche die chemische Umgebung eines Proteins verändern.

Wenn keine externen Nukleophile hinzugefügt werden, können andere Aminosäuren mit dem Episulfonium-Zwischenprodukt in einer intramolekularen Reaktion reagieren. Diese Reaktivität ermöglicht eine Protein-Protein-Bindung und die Makrozyklisierung linearer Peptide. Während der erste Ansatz die Untersuchung von Proteinkomplexen und ihrer oft veränderten biologischen Aktivität ermöglicht, macht der zweite Ansatz die Peptide stabiler gegenüber biologischem Abbau, wenn sie z. B. als Arzneimittel verwendet werden.

Darüber hinaus ermöglicht die Synthese von Vinylthianthreniumsalzen aus Ethylengas die Herstellung von Reagenzien mit unterschiedlicher Isotopenzusammensetzung. Diese isotopenmarkierten Verbindungen besitzen die gleiche Reaktivität wie nicht markierte Derivate, unterscheiden sich aber leicht in ihrem Molekulargewicht. Daher können sie in der modernen massenspektrometrischen Proteomikforschung eingesetzt werden, um quantitative Informationen aus Zellsystemen zu gewinnen.

Mehr Optionen bei weniger Syntheseschritten: Insgesamt wird die Methode der Mülheimer Forscherinnen und Forscher unter Verwendung von Vinylthianthreniumsalzen als nützliches und vielseitig anzuwendendes Werkzeug auf dem Gebiet der chemischen Biologie vorgestellt.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Synthese

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren