Immer abwechselnd
Alternierende Stapelung planarer Kationen mit planaren dipyrrolhaltigen Anionen als Konzept zum Aufbau neuer Materialien
Pyrrole, stickstoffhaltige Kohlenstoff-Fünfringe, sind essentielle Komponenten unseres roten Blutfarbstoffs und des Chlorophylls grüner Pflanzen. Japanische Forscher um Hiromitsu Maeda von der Ritsumeikan University benutzen dieses molekulare Motiv nun auch beim Aufbau neuer nanostrukturierten Materialien: Sie kombinieren planare pyrrolhaltige negativ geladene Komplexe mit ebenfalls planaren positiv geladenen organischen Ionen. Wie die Wissenschaftler in der Zeitschrift Angewandte Chemie berichten, ließen sich so Fasern und weiche Materialien wie supramolekulare Gele und Flüssigkristalle herstellen.
Salze bestehen aus Kationen und Anionen - positiv und negativ geladenen Teilchen. Die meisten Salze organisieren sich als geordnete Kristalle, die über eine elektrostatische Anziehung zwischen den gegengleich geladenen Ionen zusammengehalten werden. Es gibt aber auch ionische Flüssigkeiten, Salze, die bereits bei Raumtemperatur als Schmelze vorliegen, weil die Größe und Struktur der beteiligten Ionen verhindern, dass ein starkes Kristallgitter entsteht. Eine weitere Materialklasse sind ionische Flüssigkristalle. Flüssigkristalle sind beweglich wie eine Flüssigkeit, dennoch liegen die enthaltenen Teilchen ausgerichtet in einem geordneten Zustand vor. Daneben gibt es weitere Materialien, die stärker organisiert sind, aber dennoch einen gewissen Grad von Beweglichkeit ihrer Bausteine aufweisen. Sie sind beispielsweise von Interesse für die Herstellung ferroelektrischer Arbeitsspeicher.
Die japanischen Forscher wählten planare Ionen, um daraus neue selbstorganisierte Materialien aufzubauen, in denen die geladenen Komponenten abwechselnd gestapelt vorliegen. Baustein Nummer eins ist ein planarer Komplex aus einem kleinen anorganischen Ion und einem organischen Rezeptor (Rezeptor-Anionen-Komplex). Entscheidendes Bauelement des Rezeptors sind zwei Pyrrole, die in eine so genannte Pi-konjugierte Umgebung eingebunden sind. Das bedeutet, dass ein Teil der Elektronen als „Elektronenwolke“ über einen weiten Bereich des Moleküls frei beweglich ist. Der Ligand umschließt das Anion von drei Seiten. Baustein Nummer zwei ist ein scheibchenförmiges organisches Kation aus einem aromatischen Ringsystem - auch dieses Molekül verfügt über eine Elektronenwolke. Aufgrund elektrostatischer Anziehung zwischen gegengleich geladenen Ionen sowie anziehender Wechselwirkungen zwischen den Elektronenwolken ordnen sich diese Anionen und die Kationen immer abwechselnd gestapelt zu säulenförmigen Einheiten an.
Je nachdem, welche Art von Seitengruppen diese Bausteine zusätzlich tragen, ordnen sich die Säulen zu verschiedenen Strukturen an, wie Fasern, supramolekularen Gelen oder Flüssigkristallen. Diese alternierende Stapelung gegengleich geladener Komponenten erweist sich damit als erfolgreiches Konzept für die Herstellung neuartiger Materialien aus organischen Ionen.
Originalveröffentlichung: Hiromitsu Maeda et al.; "Oriented Salts: Dimension-Controlled Assemblies from Planar Receptor–Anion Complexes"; Angewandte Chemie 2010, 122, No. 52, 10277-10281
Meistgelesene News
Organisationen
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.