18.02.2015 - Technische Universität Wien

Nanostrukturen, die sich auf Knopfdruck bilden

Umschalten zwischen verschiedenen Nanostukturen

Man würde erwarten, dass sich Moleküle auf einer Oberfläche einfach ganz zufällig anordnen, wie Spielzeugkugeln, die man über den Boden rollen lässt. Oft ist das auch so – doch manche Moleküle können mehr. „Wenn zwischen ihnen die richtigen Kräfte wirken, verbinden sie sich automatisch zu einer komplexen Struktur“, erklärt Stijn Mertens. Er ist am Institut für angewandte Physik der TU Wien, für das Labor für elektrochemische Oberflächenphysik zuständig. Diesen Effekt zu kontrollieren ist meist sehr schwierig. Nun konnte eine Methode gefunden werden, das positiv geladene Molekül PQP+ sogar zwischen verschiedenen Ordnungszuständen wechseln zu lassen.

Die Moleküle werden auf einer ebenen Goldfläche aufgebracht und dann mit einer Elektrolytlösung bedeckt. Zwischen dem Golduntergrund und der Elektrolytlösung wird dann eine elektrische Spannung angelegt und die Moleküle bilden eine poröse Struktur. Je stärker der Golduntergrund negativ aufgeladen wird, umso mehr PQP+ Moleküle können sich pro Fläche anlagern. Daher können sich je nach elektrischer Spannung unterschiedliche geordnete Muster ergeben. „Je höher die Ladung im Gold, umso dichter wird die Überdeckung mit den PQP+ Molekülen“, erklärt Stijn Mertens. „Bei all diesen Beispielen von Selbstorganisation legt die chemische Struktur der Bausteine bereits fest, welche Anordnungen in der Ebene möglich sind.“

Sechseckige Blumenmuster

Zunächst bilden die Moleküle sechseckige, blütenartige Strukturen aus. Erhöht man die Spannung, drehen sich die Moleküle und rücken auseinander. In der Mitte jeder Sechsergruppe wird dann ein Platz für ein zusätzliches Molekül frei und eine neue, dichtere Struktur entsteht. Erhöht man die Spannung weiter, rücken die Moleküle schließlich übereinander und formen eine dreidimensionale Struktur. Mit Hilfe von Rastertunnelmikroskopen kann man die winzigen Strukturen mit Abmessungen im Bereich von wenigen Nanometern abbilden.

„Dieses Maß an Kontrolle und Reproduzierbarkeit ist bei selbstorganisierenden Molekülen ungewöhnlich“, sagt Mertens. Insbesondere der Wechsel zwischen zwei- und dreidimensionalen Strukturen konnte vorher noch nie beobachtet werden wenn nur eine einzige Sorte chemischer Bausteine verwendet wird. „Nützlich könnte das für künstliche Rezeptoren, hochspezifische Detektoren oder neue, intelligente Materialien sein“, hofft Mertens. Auch Flüssigkristall-Displays funktionieren auf ähnliche Weise: Auch dort wird die Ausrichtung von Molekülen mit Hilfe elektrischer Felder kontrolliert.

Fakten, Hintergründe, Dossiers
Mehr über TU Wien
  • News

    Ein Sandstrahler auf atomarer Ebene

    Von Halbleitern bis zum Mondgestein: Viele Materialien bearbeitet man mit Ionenstrahlen. An der TU Wien ließ sich nun erklären, wie dieser Prozess von der Rauigkeit der Oberfläche abhängt. Wenn man eine Metalloberfläche von einer Lackschicht befreien möchte, kann man dafür einen Sandstrahle ... mehr

    Einzelne Atome verankern

    Oft heißt es „never change a running system“. Dabei können neue Methoden den alten weit überlegen sein. Während chemische Reaktionen bislang vor allem mit größeren Materialmengen, bestehend aus mehreren hundert Atomen, beschleunigt werden, liefern Einzelatome einen neuen Ansatz für die Kata ... mehr

    Wie sich Ionen ihre Elektronen zurückholen

    Die atomaren Zustände, die in den Labors der TU Wien erzeugt werden, sind sehr außergewöhnlich und spielen für die Forschung eine wichtige Rolle. Es handelt sich um hochgeladene Ionen, also um Atome, die extrem stark elektrisch geladen sind, weil ihnen nicht nur ein Elektron weggenommen wur ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Organs-on-a-Chip

    Ziel der personalisierten Medizin oder Präzisionsmedizin ist es, den Patienten über die funktionale Krankheitsdiagnose hinaus unter bestmöglicher Einbeziehung individueller Gegebenheiten zu behandeln. Organ-on-a-Chip-Technologien gewinnen für die personalisierte Medizin sowie die pharmazeut ... mehr

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Sarah Spitz

    Sarah Spitz, Jahrgang 1993, studierte Biotechnologie an der Universität für Bodenkultur in Wien (BOKU) mit Abschluss Diplomingenieur. Während ihres Studiums war sie für zwei Jahre als wissenschaftliche Mitarbeiterin am Department für Biotechnologie (DBT) der BOKU angestellt. Nach einer inte ... mehr

    Prof. Dr. Peter Ertl

    Peter Ertl, Jahrgang 1970, studierte Lebensmittel- und Biotechnologie an der Universität für Bodenkultur, Wien. Im Anschluss promovierte er in Chemie an der University of Waterloo, Ontario, Kanada und verbrachte mehrere Jahre als Postdoc an der University of California, Berkeley, USA. 2003 ... mehr

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr