13.07.2016 - Max-Planck-Institut für Struktur und Dynamik der Materie

Beeinflussung supraleitender Plasmawellen mit Terahertz-Licht

Stabilisierung fluktuierender Supraleitung möglich?

Die meisten Systeme in der Natur sind inhärent nichtlinear. Das bedeutet, dass ihre Reaktion auf äußere Anregungen nicht proportional zur Stärke des Auslöseimpulses ist. Nichtlinearitäten beobachtet man beispielsweise bei makroskopischen Phänomenen wie z.B. dem Fluss von Fluiden wie Wasser und Luft, oder dem Stromfluss in elektronischen Schaltkreisen. Die Manipulation nichtlinearen Verhaltens ist daher ein interessanter Ansatz, um Kontrolle über verschiedene Prozesse zu erlangen. Ein internationales Forscherteam unter der Führung von Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie am CFEL in Hamburg hat nun die nichtlineare Wechselwirkung zwischen einem Terahertz-Lichtfeld und einer supraleitenden Plasmawelle in einem Hochtemperatursupraleiter genutzt, um Letztere zu verstärken. Dies führte zu einem kohärenteren Supraleiter, der weniger anfällig für thermische Fluktuationen ist. Aufgrund der verlustfreien, supraleitenden Natur der Plasmawelle öffnet die Studie neue Wege für die „Plasmonik“, ein Forschungsgebiet, das sich unter anderem mit der Informationsübermittlung mithilfe von Plasmawellen befasst.

Der Josephson-Effekt

Der Josephson-Effekt, 1962 von Brian D. Josephson vorhergesagt, beschreibt das Tunneln von Cooper-Paaren durch eine dünne, isolierende Barriere zwischen zwei Supraleitern. Eine solche Supraleiter-Isolator-Supraleiter-Struktur nennt man Josephson-Kontakt. Dieser Effekt wurde bereits kurze Zeit später experimentell bestätigt und Josephson erhielt 1973 den Nobelpreis für Physik, da seine Vorhersage zu einem Nachweis für die makroskopische Quantennatur von Supraleitern führte.

Die Dynamik der Ladungsträger an einem Josephson-Kontakt wird durch die Josephson-Gleichungen bestimmt, welche aussagen, dass der Stromfluss der tunnelnden Cooper-Paare proportional zum Sinus des Phasenunterschieds zwischen den beiden Supraleitern ist. Wenn an den Josephson-Kontakt eine Spannung angelegt wird, oszilliert der Tunnelstrom zwischen den Supraleitern mit einer Frequenz, die vom Spannungsabfall abhängt. Der Josephson-Effekt führte nicht nur zu grundlegenden Erkenntnissen in der Physik, sondern auch zu vielen Anwendungen, darunter sogenannte SQUIDs, das sind Sensoren zur genauen Messung extrem schwacher Magnetfelder. Diese werden unter anderem in der Medizin für die Messung von Gehirnströmungen (Magnetoenzephalographie) verwendet. Darüber hinaus finden Josephson-Kontakte heutzutage als extrem präzise Spannungsreferenz Einsatz. Dies liegt daran, dass der Josephson-Effekt ein Quanteneffekt ist, welcher Spannungen und Frequenzen (bzw. Zeit) einzig über Naturkonstanten in Beziehung zueinander setzt.

Zu aktuellen Forschungsthemen, die den Josephson-Effekt ausnutzen, gehören die Umsetzung von Qubits für Quantencomputer sowie photonische Bauelemente im Frequenzbereich von Gigahertz (GHz) bis Terahertz (THz).

Josephson-Plasmawellen in keramischen Supraleitern

Geschichtete Hochtemperatursupraleiter wie Kuprate – aufgebaut aus sich abwechselnden supraleitenden und isolierenden Schichten – sind Stapel von Josephson-Kontakten im Nanomaßstab. In diesen Materialien tritt supraleitender Transport zunächst innerhalb der Kupfer-Sauerstoff-Ebenen auf. Dreidimensionale Supraleitung entwickelt sich dann durch Josephson-Tunneln in senkrechter Richtung zu den Ebenen.

Analog zu den Maxwellgleichungen in der Elektrodynamik, deren Zeit- und Ortsabhängigkeit zu elektromagnetischen Wellen führt, führen die Josephson-Beziehungen zu den sogenannten Josephson-Plasmawellen. In Kupraten besitzen diese Wellen Frequenzen im THz-Bereich und können daher mit konventioneller THz-Spektroskopie untersucht werden.

Das Team um Andrea Cavalleri verwendete THz-Strahlung, um Josephson-Plasmawellen in mit Barium dotiertem Lanthan-Kupferoxid (La1.905Ba0.095CuO4) zu untersuchen. Über die Reflexion eines Abfragepulses konnten Sie Schwingungen mit einer Frequenz von etwa einem halben THz nachweisen. „Als wir den Supraleiter mit unseren schwachen Abfragepulsen bestrahlten, konnten wir Oszillationen des reflektierten Feldes mit einer bestimmten Frequenz, der sogenannten Josephson-Plasmafrequenz, beobachten“, sagt Srivats Rajasekaran, Erstautor der Arbeit und Postdoktorand am MPSD in Hamburg.

Nichtlinearitäten von Josephson-Plasmawellen und parametrische Verstärkung

Da Josephson-Plasmawellen den Josephson-Beziehungen unterliegen, sind sie von Natur aus nichtlinear. In der aktuellen Studie wurden diese Josephson-Plasmawellen mittels eines zusätzlichen, intensiven THz-Anregungspulses mit sehr großen Feldstärken von bis zu 100 kV/cm in einen hochgradig nichtlinearen Bereich gebracht. Eine derartig starke Anregung wurde durch die Ausnutzung jüngster Fortschritte in der THz-Technologie ermöglicht. In diesem Bereich ließ sich die Verstärkung der Josephson-Plasmawelle experimentell beobachten. „Der Reflexionsgrad der Probe wurde größer als 100% und darüber hinaus wurde der Absorptionskoeffizient negativ. Dies sind klare Anzeichen für Verstärkung innerhalb des Materials“, erklärt Srivats Rajasekaran.

Parametrische Verstärkung in einfachen oszillierenden Systemen, wobei Verstärkung durch die periodische Modulation eines bestimmten Parameters erreicht wird, ist ein gut verstandenes Phänomen. Beispielsweise verstärkt ein schaukelndes Kind die Stärke seiner Schwingung dadurch, dass es regelmäßig seinen Schwerpunkt anhebt und wieder absenkt. Ein Beispiel aus der Elektronik ist ein Schwingkreis mit periodisch veränderter Kapazität oder Induktivität. Parametrische Verstärker dieses Typs finden bei der rauschfreien Verstärkung schwacher Signale Anwendung (z.B. in der Radioastronomie). „Was die parametrische Verstärkung angeht, verhält sich ein geschichteter Supraleiter ganz ähnlich wie ein elektrischer Schwingkreis“, sagt Srivats Rajasekaran. „Der Josephson-Suprastrom ist wie ein Kabel, das die Platten eines Kondensators verbindet – in diesem Fall die Kupferoxidschichten.“ Die Induktivität des Suprastroms hängt von der Phasendifferenz zwischen den Ebenen ab, und diese Phasendifferenz ändert sich mit der Zeit und mit der Position innerhalb der Ebene.

„Als wir unseren intensiven Anregungspuls auf die Probe strahlten, oszillierte die Anregungs-Abfrage-Reaktion mit der doppelten Josephson-Plasmafrequenz. Das entspricht einer periodischen Modulation der Induktivität, welche für parametrische Verstärkung benötigt wird“, fügt Srivats Rajasekaran hinzu. „Dies ist das erste Mal, dass der Effekt parametrischer Verstärkung durch Lichtbestrahlung für Josephson-Plasmawellen nachgewiesen wurde“, erklärt Andrea Cavalleri, Direktor am MPSD in Hamburg.

Mögliche Anwendungen

Verstärkung von Josephson-Plasmawellen unter Ausnutzung der nichtlinearen Josephson-Beziehungen mittels THz-Pulsen fügt sich in eine Reihe mit den vorherigen Arbeiten zu geschichteten Supraleitern unter der Leitung von Andrea Cavalleri. In diesen wurde THz-Licht verwendet, um Supraleitung zwischen den Materialebenen aus- und anzuschalten und um supraleitende Solitonen zu erzeugen. Darüber hinaus hat die vorliegende Arbeit Auswirkungen auf die Kontrolle von Fluktuationen des Suprafluids. „Die Möglichkeit, das Suprafluid eines geschichteten Supraleiters parametrisch zu kontrollieren, könnte letztendlich ein Werkzeug zur Stabilisierung fluktuierender Supraleitung liefern, vielleicht sogar bei Temperaturen oberhalb der kritischen Temperatur“, schließt Andrea Cavalleri.

  • S. Rajasekaran, E. Casandruc, Y. Laplace, D. Nicoletti, G. D. Gu, S. R. Clark, D. Jaksch, and A. Cavalleri; “Parametric Amplification of a Superconducting Plasma Wave”; Nature Physics; Advance Online Publication, (July 11, 2016)
Fakten, Hintergründe, Dossiers
  • MPI für Struktur un…
  • Terahertzlicht
  • Plasmonik
Mehr über Max-Planck-Institut für Struktur und Dynamik der Materie
Mehr über Max-Planck-Gesellschaft
  • News

    Wie wollen wir in Zukunft heizen?

    Die Frage des richtigen Heizens wird in Zeiten knapper Ressourcen und vor allem vor dem Hintergrund der Erderwärmung immer wichtiger und wird momentan hefig in den Medien diskutiert. Hat die alte Ölheizung noch eine Zukunft und wenn ja, kann man sie mit effizienten, nachhaltigen Brennstoffe ... mehr

    225 Millionen Euro für Start-ups der Max-Planck-Gesellschaft

    Zum erfolgreichen Geschäftsjahr für Max-Planck-Innovation gehören steigende Investmentsummen für die betreuten Start-ups. Vor allem Life Sciences Start-ups mit hohem Reifegrad sorgten für einen Rekord. Über 225 Millionen Euro an Wagniskapital sammelten Unternehmen im Beteiligungsportfolio v ... mehr

    Stalaktiten und Stalakmiten in der Batterie?

    Sie gelten als „Heiliger Gral“ der Batterieforschung: So genannte „Festkörperbatterien“. Sie besitzen keinen flüssigen Kern mehr, wie dies bei heutigen Batterien der Fall ist, sondern bestehen aus einem festen Material. Dies führt zu einigen Vorteilen: Unter anderem sind diese Batterien sch ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr