18.08.2016 - Universität Basel

Forscher schauen Katalysator bei der Arbeit zu

Physikern der Universität Basel ist es erstmals gelungen, mithilfe eines Rasterkraftmikroskops einem Silberkatalysator bei der Arbeit zuzusehen. Aus den Beobachtungen während einer sogenannten Ullmann-Reaktion können die Forscher deren Energieumsatz berechnen und die Katalyse damit möglicherweise optimieren.

Die untersuchte Ullmann-Reaktion ist eine chemische Reaktion, bei der Silberatome die Bindung von zwei Kohlenstoffatomen katalysieren, an denen vorher Iod gebunden war. Obwohl diese Art der Reaktion schon seit 1901 bekannt ist und für zahlreiche wichtige chemische Umwandlungen angewendet wird, konnte das Zwischenprodukt dieser Reaktion bisher nicht genau beobachtet werden.

Dieses Zwischenprodukt haben nun Forscher um Prof. Ernst Meyer und Dr. Shigeki Kawai vom Swiss Nanoscience Institute und dem Departement Physik der Universität Basel mithilfe eines Rasterkraftmikroskops in atomarer Auflösung dargestellt.

Überraschenderweise zeigte sich, dass die Silberatome schon bei Temperaturen von etwa –120 °C  mit den Molekülen reagieren und gekrümmt wie eine Brücke über einen Fluss erscheinen. Im zweiten Schritt der Reaktion, der eine Temperaturerhöhung auf etwa 105 °C benötigt und zum Endprodukt führt, werden die Silberatome wieder frei und zwei Kohlenstoffatomen binden aneinander.

Energieberechnung möglich

Die Ullmann-Reaktion wird schon seit Langem für chemische Synthesen genutzt. In jüngster Zeit hat sich das Interesse an dieser Kopplung von Kohlenstoffatomen weiter verstärkt, da damit organische Moleküle an Oberflächen gebunden und lösungsmittelfrei Polymere hergestellt werden. Eine genaue Beobachtung der Arbeit des eingesetzten Katalysators lässt die Wissenschaftler den Ablauf der Reaktion besser verstehen.

Bisherige Analysen konnten die räumliche Anordnung des metallorganischen Zwischenprodukts nicht zeigen. Erst die jetzt erhaltenen detailgenauen Aufnahmen ermöglichten dem Projektpartner Prof. Stefan Goedecker vom Departement Physik der Universität Basel, den Energieumsatz der untersuchten Ullmann-Reaktion zu berechnen. Diese Daten bestätigten die ungewöhnliche räumliche Anordnung des Zwischenprodukts und liefern Hinweise zur Optimierung der Reaktion.

Relativ geringe Temperaturen

Es liegt wahrscheinlich an der beobachteten Krümmung  bzw. Flexibilität der Moleküle, dass die Reaktion relativ geringe Temperaturen von 105 °C benötigt. Die Moleküle stehen unter mechanischer Spannung und können somit leichter reagieren, also bei geringeren Temperaturen. Wenn es gelänge, auch mit andern Katalysatoren solche unter Spannung stehende Zwischenprodukte zu erreichen, könnten katalytische Reaktionen auch bei tieferen Temperaturen möglich werden. Dies wäre ökologisch und ökonomisch sinnvoll, da klassische Katalysatoren mit Platin, Rhodium oder Palladium oft hohe Betriebstemperaturen von 500 °C benötigen – was zur Emission von Abgasen im kalten Zustand führt.

Die Forschungsarbeiten wurden im Rahmen einer Kooperation zwischen dem Departement Physik der Universität Basel, dem National Institute of Materials Science (Japan), der Japan Science and Technology Agency (Japan), der University of Tokyo (Japan) und der Shadid Beheshti University (Iran) durchgeführt.

Fakten, Hintergründe, Dossiers
Mehr über Universität Basel
  • News

    Von der Tüte ins Essen: Welche Schadstoffe sind im Verpackungsmaterial?

    Die Salatbox to go, die eingeschweisste Lasagne oder die Apfelschorle in der PET-Flasche: Überall begegnen wir verpackten Lebensmitteln. Welche dieser Verpackungen schädliche Stoffe enthalten, die sich auf die Lebensmittel übertragen können, macht eine neue Datenbank ersichtlich. Darin eing ... mehr

    Kühlung von Materie aus Distanz

    Forschende der Universität Basel können zwei Quantensysteme über eine Distanz von einem Meter zu einem Regelkreis verbinden. In diesem Regelkreis wird das eine Quantensystem – eine vibrierende Membran – durch das andere Quantensystem – eine Wolke von Atomen – gekühlt. Die beiden Systeme sin ... mehr

    Mikroplastik in der Antarktis auf der Spur

    Mikroplastik ist ein Problem für die Umwelt, weil die kleinen Partikel von Organismen aufgenommen werden und sie schädigen können. Auch entlegene Regionen sind davon betroffen, beispielsweise die Antarktis. Um herauszufinden, wie gross die Belastung ist und woher die Kleinstteile stammen, u ... mehr

Mehr über National Institute for Materials Science
Mehr über Japan Science and Technology Agency
Mehr über University of Tokyo
  • News

    Neuartiger tragbarer chemischer Sensor

    Die Forscher haben einen speziellen ultradünnen Sensor aus gesponnenem Gold entwickelt, der direkt auf der Haut angebracht werden kann, ohne sie zu reizen oder zu belasten. Der Sensor kann verschiedene Biomarker oder Substanzen messen, um chemische Analysen am Körper durchzuführen. Er arbei ... mehr

    Papier oder Plastik?

    Uns und der Umwelt zuliebe wird intensiv an der Reduzierung von Kunststoffen für die verschiedensten Anwendungen geforscht. Zum ersten Mal haben Forscher einen Weg gefunden, relativ nachhaltige Papiermaterialien mit einigen der nützlichen Eigenschaften von Kunststoffen auszustatten. Dies ka ... mehr

    Die Zukunft der Entsalzung?

    Wasserknappheit ist ein wachsendes Problem auf der ganzen Welt. Die Entsalzung von Meerwasser ist eine bewährte Methode zur Gewinnung von Trinkwasser, die jedoch mit enormen Energiekosten verbunden ist. Zum ersten Mal verwenden Forscher Nanostrukturen auf Fluorbasis, um erfolgreich Salz aus ... mehr

Mehr über Shadid Beheshti University