18.08.2016 - Universität Basel

Forscher schauen Katalysator bei der Arbeit zu

Physikern der Universität Basel ist es erstmals gelungen, mithilfe eines Rasterkraftmikroskops einem Silberkatalysator bei der Arbeit zuzusehen. Aus den Beobachtungen während einer sogenannten Ullmann-Reaktion können die Forscher deren Energieumsatz berechnen und die Katalyse damit möglicherweise optimieren.

Die untersuchte Ullmann-Reaktion ist eine chemische Reaktion, bei der Silberatome die Bindung von zwei Kohlenstoffatomen katalysieren, an denen vorher Iod gebunden war. Obwohl diese Art der Reaktion schon seit 1901 bekannt ist und für zahlreiche wichtige chemische Umwandlungen angewendet wird, konnte das Zwischenprodukt dieser Reaktion bisher nicht genau beobachtet werden.

Dieses Zwischenprodukt haben nun Forscher um Prof. Ernst Meyer und Dr. Shigeki Kawai vom Swiss Nanoscience Institute und dem Departement Physik der Universität Basel mithilfe eines Rasterkraftmikroskops in atomarer Auflösung dargestellt.

Überraschenderweise zeigte sich, dass die Silberatome schon bei Temperaturen von etwa –120 °C  mit den Molekülen reagieren und gekrümmt wie eine Brücke über einen Fluss erscheinen. Im zweiten Schritt der Reaktion, der eine Temperaturerhöhung auf etwa 105 °C benötigt und zum Endprodukt führt, werden die Silberatome wieder frei und zwei Kohlenstoffatomen binden aneinander.

Energieberechnung möglich

Die Ullmann-Reaktion wird schon seit Langem für chemische Synthesen genutzt. In jüngster Zeit hat sich das Interesse an dieser Kopplung von Kohlenstoffatomen weiter verstärkt, da damit organische Moleküle an Oberflächen gebunden und lösungsmittelfrei Polymere hergestellt werden. Eine genaue Beobachtung der Arbeit des eingesetzten Katalysators lässt die Wissenschaftler den Ablauf der Reaktion besser verstehen.

Bisherige Analysen konnten die räumliche Anordnung des metallorganischen Zwischenprodukts nicht zeigen. Erst die jetzt erhaltenen detailgenauen Aufnahmen ermöglichten dem Projektpartner Prof. Stefan Goedecker vom Departement Physik der Universität Basel, den Energieumsatz der untersuchten Ullmann-Reaktion zu berechnen. Diese Daten bestätigten die ungewöhnliche räumliche Anordnung des Zwischenprodukts und liefern Hinweise zur Optimierung der Reaktion.

Relativ geringe Temperaturen

Es liegt wahrscheinlich an der beobachteten Krümmung  bzw. Flexibilität der Moleküle, dass die Reaktion relativ geringe Temperaturen von 105 °C benötigt. Die Moleküle stehen unter mechanischer Spannung und können somit leichter reagieren, also bei geringeren Temperaturen. Wenn es gelänge, auch mit andern Katalysatoren solche unter Spannung stehende Zwischenprodukte zu erreichen, könnten katalytische Reaktionen auch bei tieferen Temperaturen möglich werden. Dies wäre ökologisch und ökonomisch sinnvoll, da klassische Katalysatoren mit Platin, Rhodium oder Palladium oft hohe Betriebstemperaturen von 500 °C benötigen – was zur Emission von Abgasen im kalten Zustand führt.

Die Forschungsarbeiten wurden im Rahmen einer Kooperation zwischen dem Departement Physik der Universität Basel, dem National Institute of Materials Science (Japan), der Japan Science and Technology Agency (Japan), der University of Tokyo (Japan) und der Shadid Beheshti University (Iran) durchgeführt.

Fakten, Hintergründe, Dossiers
Mehr über Universität Basel
  • News

    Wie Quecksilber ins Meer gelangt

    Von der Industrie freigesetztes Quecksilber gerät über die Luft ins Meer und von dort aus in die Nahrungskette. Eine Analyse der Universität Basel zeigt nun, wie der Schadstoff ins Wasser gelangt: nicht wie bisher vermutet vor allem durch Regen, sondern auch über Gasaustausch. Daher könnten ... mehr

    Mangan statt Edelmetalle: Nachhaltigere Leuchtstoffe und Sonnenlicht-Nutzung

    Forschenden der Universität Basel ist ein wichtiger Schritt gelungen, um nachhaltigere Leuchtstoffe und Katalysatoren für die Umwandlung von Sonnenlicht in andere Energieformen zu produzieren. Auf der Basis von kostengünstigem Mangan entwickelten sie eine neue Verbindungsklasse mit vielvers ... mehr

    Infrarot in die Zange genommen

    Für vielfältige Anwendungen, von der faseroptischen Telekommunikation bis zu bildgebenden Verfahren für die Biomedizin werden im nahen Infrarot-Bereich (NIR) leuchtende Substanzen benötigt. Ein Schweizer Forschungsteam hat jetzt erstmals einen Chrom-Komplex entwickelt, der Licht im begehrte ... mehr

Mehr über National Institute for Materials Science
Mehr über Japan Science and Technology Agency
  • News

    Einfache Herstellung eines Super-Mehrelement-Katalysators

    Eine Forschungsgruppe in Japan hat erfolgreich einen "nanoporösen Super-Mehrelement-Katalysator" entwickelt, der 14 Elemente enthält, die auf atomarer Ebene gleichmäßig gemischt sind und als Katalysator verwendet werden. Eine hochentropische Legierung, die aus 10 oder mehr Elementen besteht ... mehr

    "Resonanz"-Raman-Spektroskopie mit 1 nm Auflösung

    Spitzenverstärkte Raman-Spektroskopie löste die "Resonanz"-Raman-Streuung mit 1 nm Auflösung in ultradünnen Zinkoxidschichten, die epitaktisch auf einer einkristallinen Silberoberfläche gewachsen sind. Die spitzenverstärkte "Resonanz"-Raman-Streuung kann zur Untersuchung einer bestimmten ch ... mehr

Mehr über University of Tokyo
Mehr über Shadid Beheshti University