18.08.2016 - Universität Basel

Forscher schauen Katalysator bei der Arbeit zu

Physikern der Universität Basel ist es erstmals gelungen, mithilfe eines Rasterkraftmikroskops einem Silberkatalysator bei der Arbeit zuzusehen. Aus den Beobachtungen während einer sogenannten Ullmann-Reaktion können die Forscher deren Energieumsatz berechnen und die Katalyse damit möglicherweise optimieren.

Die untersuchte Ullmann-Reaktion ist eine chemische Reaktion, bei der Silberatome die Bindung von zwei Kohlenstoffatomen katalysieren, an denen vorher Iod gebunden war. Obwohl diese Art der Reaktion schon seit 1901 bekannt ist und für zahlreiche wichtige chemische Umwandlungen angewendet wird, konnte das Zwischenprodukt dieser Reaktion bisher nicht genau beobachtet werden.

Dieses Zwischenprodukt haben nun Forscher um Prof. Ernst Meyer und Dr. Shigeki Kawai vom Swiss Nanoscience Institute und dem Departement Physik der Universität Basel mithilfe eines Rasterkraftmikroskops in atomarer Auflösung dargestellt.

Überraschenderweise zeigte sich, dass die Silberatome schon bei Temperaturen von etwa –120 °C  mit den Molekülen reagieren und gekrümmt wie eine Brücke über einen Fluss erscheinen. Im zweiten Schritt der Reaktion, der eine Temperaturerhöhung auf etwa 105 °C benötigt und zum Endprodukt führt, werden die Silberatome wieder frei und zwei Kohlenstoffatomen binden aneinander.

Energieberechnung möglich

Die Ullmann-Reaktion wird schon seit Langem für chemische Synthesen genutzt. In jüngster Zeit hat sich das Interesse an dieser Kopplung von Kohlenstoffatomen weiter verstärkt, da damit organische Moleküle an Oberflächen gebunden und lösungsmittelfrei Polymere hergestellt werden. Eine genaue Beobachtung der Arbeit des eingesetzten Katalysators lässt die Wissenschaftler den Ablauf der Reaktion besser verstehen.

Bisherige Analysen konnten die räumliche Anordnung des metallorganischen Zwischenprodukts nicht zeigen. Erst die jetzt erhaltenen detailgenauen Aufnahmen ermöglichten dem Projektpartner Prof. Stefan Goedecker vom Departement Physik der Universität Basel, den Energieumsatz der untersuchten Ullmann-Reaktion zu berechnen. Diese Daten bestätigten die ungewöhnliche räumliche Anordnung des Zwischenprodukts und liefern Hinweise zur Optimierung der Reaktion.

Relativ geringe Temperaturen

Es liegt wahrscheinlich an der beobachteten Krümmung  bzw. Flexibilität der Moleküle, dass die Reaktion relativ geringe Temperaturen von 105 °C benötigt. Die Moleküle stehen unter mechanischer Spannung und können somit leichter reagieren, also bei geringeren Temperaturen. Wenn es gelänge, auch mit andern Katalysatoren solche unter Spannung stehende Zwischenprodukte zu erreichen, könnten katalytische Reaktionen auch bei tieferen Temperaturen möglich werden. Dies wäre ökologisch und ökonomisch sinnvoll, da klassische Katalysatoren mit Platin, Rhodium oder Palladium oft hohe Betriebstemperaturen von 500 °C benötigen – was zur Emission von Abgasen im kalten Zustand führt.

Die Forschungsarbeiten wurden im Rahmen einer Kooperation zwischen dem Departement Physik der Universität Basel, dem National Institute of Materials Science (Japan), der Japan Science and Technology Agency (Japan), der University of Tokyo (Japan) und der Shadid Beheshti University (Iran) durchgeführt.

Fakten, Hintergründe, Dossiers
Mehr über Universität Basel
  • News

    Infrarot in die Zange genommen

    Für vielfältige Anwendungen, von der faseroptischen Telekommunikation bis zu bildgebenden Verfahren für die Biomedizin werden im nahen Infrarot-Bereich (NIR) leuchtende Substanzen benötigt. Ein Schweizer Forschungsteam hat jetzt erstmals einen Chrom-Komplex entwickelt, der Licht im begehrte ... mehr

    Ultimativ dünne Halbleiter erstmals elektrisch mit Supraleiter verbunden

    Forschende der Universität Basel haben erstmals einen atomar dünnen Halbleiter mit supraleitenden Kontakten versehen. Solche extrem dünnen Bauelemente mit neuartigen elektronischen und optischen Eigenschaften könnten den Weg für bisher ungeahnte Anwendungen ebnen. Kombiniert mit Supraleiter ... mehr

    Dehnung verändert die elektrischen Eigenschaften von Graphen

    Die elektrischen Eigenschaften von Graphen lassen sich durch eine gleichmässige Dehnung des Materials gezielt verändern, berichten Forschende der Universität Basel. Das ebnet den Weg für die Entwicklung neuartiger elektronischer Bauteile. Graphen besteht aus einer einzigen Schicht von Kohl ... mehr

Mehr über National Institute for Materials Science
Mehr über Japan Science and Technology Agency
  • News

    "Resonanz"-Raman-Spektroskopie mit 1 nm Auflösung

    Spitzenverstärkte Raman-Spektroskopie löste die "Resonanz"-Raman-Streuung mit 1 nm Auflösung in ultradünnen Zinkoxidschichten, die epitaktisch auf einer einkristallinen Silberoberfläche gewachsen sind. Die spitzenverstärkte "Resonanz"-Raman-Streuung kann zur Untersuchung einer bestimmten ch ... mehr

Mehr über University of Tokyo
  • News

    Sie wollen neue fortschrittliche Materialien?

    Ob man es glaubt oder nicht, Stahl hat etwas mit bakteriellen Anhängseln gemeinsam: Beide können eine besondere Art der physikalischen Transformation durchlaufen, die nach wie vor rätselhaft ist. Jetzt haben Forscher aus Japan und China durch direkte mikroskopische Beobachtungen mehr Klarhe ... mehr

    Nachhaltige chemische Synthese mit Platin

    Mit Hilfe von Platin- und Aluminiumverbindungen haben Forscher einen Katalysator geschaffen, der bestimmte chemische Reaktionen effizienter als je zuvor ablaufen lässt. Der Katalysator könnte den Energieverbrauch in verschiedenen industriellen und pharmazeutischen Prozessen erheblich reduzi ... mehr

    Beton ohne Zement?

    Forscher am Institute of Industrial Science, einem Teil der University of Tokyo, haben eine neue Methode entwickelt, um Beton ohne Zement herzustellen. Sie haben Sandpartikel durch eine einfache Reaktion in Alkohol mit einem Katalysator direkt miteinander verbunden. Dies könnte sowohl helfe ... mehr

Mehr über Shadid Beheshti University