Ein perfektes Team für die Nanoelektronik

In Kunststoff gehüllte Silizium-Nanoblätter als Alternative zu Graphen

09.03.2017 - Deutschland

Silizium-Nanoblätter sind dünne, zweidimensionale Schichten mit herausragenden optoelektronischen Eigenschaften, ähnlich denen des Graphens. Alleine sind sie jedoch instabil. Nun stellt ein Forscherteam der Technischen Universität München (TUM) erstmals ein Verbundmaterial aus den Silizium-Nanoblättern und einem Kunststoff vor, das UV-beständig und leicht zu verarbeiten ist. Einer industriellen Anwendung, etwa als Material für flexible Displays oder Photosensoren, kommt das interdisziplinäre Team damit ein bedeutendes Stück näher.

Tobias Helbich / TUM

Extrudierte Spirale aus polymerumhüllten Silizium-Nanoblättchen unter UV-Licht

Ähnlich wie Kohlenstoff bildet auch Silizium zweidimensionale Netzwerke, die nur eine Atomlage dick sind. Wie das Graphen, für dessen Entdeckung Andre Geim und Konstantin Novoselov 2010 den Nobelpreis erhielten, verfügen sie über herausragende optoelektronische Eigenschaften. Einsetzbar wären Silizium-Nanoblätter daher in der Nanoelektronik, beispielsweise für biegbare Displays, als Material für Feldeffekttransistoren oder für Photodetektoren. Auf Grund seiner Fähigkeit Li-Ionen zu speichern, ist es auch als Anodenmaterial für Lithiumionen Akkus im Gespräch.

„Silizium-Nanoblätter sind besonders interessant, weil unsere gesamte Informationstechnologie heute auf Silizium basiert und man anders als beim Graphen nicht auf einen anderen Grundstoff wechseln müsste“, erklärt Tobias Helbich vom WACKER-Lehrstuhl für Makromolekulare Chemie der TU München. „Jedoch sind die Nanoblätter alleine sehr anfällig und werden von UV-Licht schnell zersetzt, was seine Anwendung bisher stark einschränkte.“

Polymer und Nanoblätter – die besten Eigenschaften vereint

Nun ist es Helbich zusammen mit Professor Bernhard Rieger, Inhaber des Lehrstuhls für Makromolekulare Chemie, erstmals gelungen die Silizium Nanoblätter in Kunststoff einzubetten und so vor der Zersetzung zu schützen. Gleichzeitig werden die Nanoblätter im selben Schritt modifiziert und so gegen Oxidation geschützt. Es ist das erste Nanokomposit auf Basis von Siliziumnanoblättern.

„Das Besondere an unserem Nanokomposit ist, dass es die positiven Eigenschaften seiner beiden Bestandteile vereint“, erklärt Tobias Helbich. „Die Polymermatrix absorbiert das Licht im UV Bereich, stabilisiert die Nanoblätter und verleiht dem Material die Eigenschaften des verwendeten Polymers, während gleichzeitig die außergewöhnlichen optoelektronischen Eigenschaften der Nanoblätter erhalten bleiben.“

Fernziel Nanoelektronik – mit großen Schritten in Richtung industrielle Anwendung

Seine Flexibilität und Beständigkeit gegen äußere Einflüsse führen zudem dazu, dass sich das neu entwickelte Material mit gängigen Verfahren der Polymertechnik industriell verarbeiten lässt. Eine industrielle Anwendung rückt so in greifbare Nähe.

Besonders für einen Einsatz im Bereich des gerade neu aufkommenden Gebiets der Nanoelektronik eignen sich die Komposite. Hier werden „klassische“ elektronische Komponenten wie Schaltkreise und Transistoren auf Basis neuer Nanomaterialien in Größen verwirklicht, die unter 100 Nanometern liegen. Auf diese Weise lassen sich ganz neue Technologien verwirklichen – etwa für schnellere Computerprozessoren.

Nanoelektrischer Photodetektor

Eine erste erfolgreiche Anwendung des von Helbich konstruierten Nanokomposits wurde erst vor kurzem im Rahmen des des ATUMS Graduiertenprogramms (Alberta/TUM International Graduate School for Functional Hybrid Materials vorgestellt: Alina Lyuleeva und Prof. Paolo Lugli vom Lehrstuhl für Nanoelektronik der TU München gelang es in enger Zusammenarbeit mit Helbich und Rieger, einen wenige Nanometer großen Photodetektor zu bauen.

Dafür trugen sie die in eine Polymermatrix eingebetteten Silizium-Nanoblätter auf eine mit Goldkontakten beschichtete Siliziumdioxid-Oberfläche auf. Aufgrund seiner geringen Abmessungen spart ein solcher nanoelektronischer Detektor viel Platz und Energie.

Die Arbeit ist Teil des ATUMS Graduiertenprogramms (Alberta/TUM International Graduate School for Functional Hybrid Materials (ATUMS; IRTG 2022), in dem deutsche und kanadische Wissenschaftler aus den Bereichen Chemie, Elektrotechnik und Physik eng zusammen arbeiten. Ihr Ziel ist es nicht nur, auf Basis von Nanopartikeln und Polymeren Materialien mit ganz neuen Funktionen zu schaffen, sondern zugleich auch parallel erste Anwendungen zu entwickeln. Die Arbeiten wurden gefördert von der Deutschen Forschungsgemeinschaft (DFG) und dem Natural Science and Engineering Research Council of Canada (NSERC).

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

HYPERION II

HYPERION II von Bruker

FT-IR und IR-Laser-Imaging (QCL) Mikroskop für Forschung und Entwicklung

Untersuchen Sie makroskopische Proben mit mikroskopischer Auflösung (5 µm) in sekundenschnelle

FT-IR-Mikroskope
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller