03.06.2020 - Friedrich-Schiller-Universität Jena

Neuartige Nano-Schalter lassen sich per Lichtsignal bedienen

Graphen wird „intelligent“

Ein Forschungsteam der Friedrich-Schiller-Universität und der Physikalisch-Technischen Bundesanstalt entwickelt neuartige Nano-Schalter, die sich per Lichtsignal bedienen lassen. In der Fachzeitschrift „Chemistry A European Journal“ stellen die Forscher ihr Konzept eines photoschaltbaren Feldeffekt­transistors vor. Darin kommen ultradünne intelligente Materialien zum Einsatz: eine leitfähige Schicht aus Graphen, kombiniert mit einer einzigen molekularen Lage mit funktionalen Azobenzol-Einheiten.

Intelligente Werkstoffe

Das Team um Prof. Dr. Andrey Turchanin vom Institut für Physika­lische Chemie der Universität Jena entwickelt intelligente Werkstoffe. „Intelligent meint in diesem Zusammenhang, dass sich Werkstoffe an verän­dernde Umgebungsbe­din­gungen anpassen und dadurch ihre Eigenschaften ändern“, erläutert Prof. Turch­anin. Der Materialwissenschaftler hat in seiner Arbeit vor allem den Werkstoff Graphen im Blick. Nur eine Atomlage dick, ist diese Form des Elements Kohlenstoff besonders leitfähig, extrem reißfest und biegsam, härter als Stahl und doch ultraleicht. „Diese Eigenschaften machen Graphen für einen Einsatz in elektronischen Nanobauteilen, wie Transistoren, interessant“, sagt Turchanin.

„Intelligent“ wird Graphen jedoch erst, wenn sich seine elektronischen Eigen­schaften gezielt steuern und kontrolliert variieren lassen. Und genau dafür haben Turchanin und seine Jenaer Kollegen jetzt eine vielversprechende Methodik entwickelt. In einer gera­de veröffentlichten Studie kombi­nieren sie Graphen mit einem ca. einen Nanometer dünnen moleku­laren Nanoblatt, das mit Azobenzol-Einheiten funktionalisiert ist „Das Besondere an diesem organischen Material ist, dass es durch den Einfluss von Licht seine molekulare Struktur verändert“, so Turchanin. Durch die Bestrahlung mit ultra­violettem Licht vollzieht sich in den Azobenzol-Mole­külen eine Konfigurationsänderung, die zu verän­der­ten Eigenschaften der Molekül­schicht führt — in diesem Fall zu einem veränderten Dipol­moment. Die Einstrahlung von sichtbarem Licht bewirkt eine Konfigurations­änderung in umgekehrte Richtung. 

Licht schaltet den Stromfluss „an“ oder „aus“

Der winzige Transistor aus einer Lage Graphen und einem ultradünnen azobenzol-funktionalisierten Nanoblatt beschichtet funktioniert so: Wird eine Spannung angelegt, fließt durch die Graphenschicht ein Strom. Wird UV-Licht dazugeschaltet, wird durch die veränderten Dipoleigenschaften der Azobenzol-Einheiten in dem darunter­liegenden Graphen ein elektrisches Feld induziert, was den Stromfluss unterbricht. Bestrahlt man den Transistor dagegen mit blauem Licht, ändert sich die Konfigu­ration erneut, was bedeutet, dass wieder Strom fließt. „Wir können den Stromfluss also durch eine geziel­te Bestrahlung regulieren“, erläutert Andrey Turchanin die Funktionsweise des lichtbe­triebenen Nano-Schalters.

Dieses Sandwich-Prinzip, so die Autoren der Studie, lasse sich als Grundlage für eine ganze Reihe von Anwen­dungen nutzen. Einsetzbar sind solche zweidimensionalen schaltbaren Materialien zum Beispiel in Energiespeichern, wie Kondensatoren und Batterien, die durch den Lichteinfall ihre Kapazität verändern. Andere Anwendungs­möglichkeiten sind Sensoren, etwa zum Nachweis von Krankheitserregern. „Statt der photosensiblen Azobenzene könnte man Moleküle auf die Graphenschicht aufbringen, an die Viruspartikel oder Bakterien spezifisch binden. Sobald das passiert, würde in einem solchen Sensor der Stromfluss unterbrochen und der Detektor zeigt ein Signal an“, so Turchanin.

Fakten, Hintergründe, Dossiers
  • Schalter
  • Nano-Schalter
  • Feldeffekttransistoren
  • Werkstoffe
  • Transistoren
Mehr über Uni Jena
  • News

    Mit Ultraschall Lichtemission anregen und Temperatur messen

    Werden mechanolumineszente Materialien von außen mechanisch belastet, dann emittieren sie sichtbares oder unsichtbares Licht. Eine solche Anregung kann zum Beispiel durch Knicken oder sanften Druck passieren, aber auch völlig berührungsfrei über Ultraschall. Auf diese Weise lässt sich der E ... mehr

    So könnten die ersten Biomoleküle entstanden sein

    Die chemischen Vorstufen unserer heutigen Biomoleküle könnten nicht nur in der Tiefsee an hydrothermalen Quellen entstanden sein, sondern auch in warmen Tümpeln an der Erdoberfläche. Die chemischen Reaktionen, die in dieser „Ursuppe“ möglicherweise stattgefunden haben, hat ein international ... mehr

    Mit Sonnenlicht die Chemie-Industrie nachhaltiger machen

    Einem Forschungsteam der Universitäten Ulm und Jena ist es gelungen, die Entwicklung solargetriebener Katalysatoren entscheidend voranzutreiben. Ihre optimierten Photokatalysatoren sind effektiver als herkömmliche thermische Katalysatoren und legen damit einen Grundstein für die nachhaltige ... mehr

  • q&more Artikel

    Effektive Wirkstoff-Navigation bei Sepsis

    Viele Wirkstoffkandidaten gelangen wegen Nebenwirkungen nicht zur klinischen Anwendung. So können z.B. Inhibitoren der Phosphoinositid-3-Kinase-γ, eines Signalproteins, das bei Infektionen eine bedeutende Rolle spielt, wegen Nebenwirkungen auf die Immunantwort nicht verwendet werden. mehr

    Gene auf Zucker

    Der gezielte Transport von DNA und RNA mit Vektoren, meist aus synthetischen Polymeren, in Zellkulturen gehört mittlerweile zum festen Repertoire der biologischen Forschung und Entwicklung, was die Vielzahl an kommerziellen Kits zeigt. Allerdings gestalten sich bisher nicht nur viele Laborv ... mehr

    Sex oder Tod

    Diatomeen sind einzellige Mikroalgen, die aufgrund ihrer filigranen und reich verzierten mineralisierten Zellwand auch als Kieselalgen bezeichnet werden. Trotz ihrer mikroskopisch kleinen Zellen spielen ­diese Algen eine fundamentale ­Rolle für marine Ökosysteme und sind sogar zentrale Akte ... mehr

  • Autoren

    Prof. Dr. Ulrich S. Schubert

    Ulrich S. Schubert, Jahrgang 1969, ist Lehrstuhlinhaber (W3) für Organische und Makromolekulare Chemie an der Friedrich-Schiller-Universität Jena. Er studierte Chemie an den Universitäten Frankfurt und Bayreuth und promovierte anschließend an den Universitäten Bayreuth und South Florida, Ta ... mehr

    Prof. Dr. Thomas Heinze

    Thomas Heinze, Jahrgang 1958, studierte Chemie an der FSU Jena, wo er 1985 promovierte und nach dem Postdoc an der Katholischen Universität Leuven (Belgien) 1997 habilitierte. 2001 folgte er dem Ruf auf eine Professur für Makromolekulare Chemie an die Bergische Universität Wuppertal. Seit 2 ... mehr

    Prof. Dr. Dagmar Fischer

    Dagmar Fischer ist approbierte Apothekerin und promovierte 1997 im Fach Pharmazeutische Technologie und Biopharmazie an der Philipps-Universität Marburg. Nach einem Aufenthalt am Texas Tech University Health Sciences Center, USA, sammelte sie mehrere Jahre Erfahrung als Leiterin der Präklin ... mehr

Mehr über Physikalisch-Technische Bundesanstalt
  • News

    Weltweit erste optische Atomuhr mit hochgeladenen Ionen

    Optische Atomuhren sind die genauesten je gebauten Messgeräte und sind inzwischen zu einer Schlüsseltechnik in der Grundlagen- und der angewandten Forschung geworden, etwa zum Test der Konstanz von Naturkonstanten oder für Höhenmessungen in der Geodäsie. Jetzt haben Forschende des QUEST-Ins ... mehr

    Start-Up-Förderung für angewandte Quantentechnologie

    Ob im Computing, für die Sensorik oder in der Kryptografie – die Möglichkeiten, Quantenprozesse für bahnbrechende technologische Innovationen einzusetzen, sind vielversprechend. Die Anstrengungen in der Grundlagenforschung sind intensiv. Und nicht minder die Ansätze, all diese technologisch ... mehr

    Warum altern Lithium-Schwefel-Batterien noch zu schnell?

    Mit der Elektromobilität nimmt auch die Suche nach Alternativen zu den klassischen Lithium-Ionen-Batterien Fahrt auf. Eine der Kandidatinnen heißt Lithium-Schwefel-Batterie. Um herauszufinden, warum dieser Typ Batterie noch nicht seine maximal mögliche Kapazität und Lebensdauer erreicht, wu ... mehr

  • q&more Artikel

    Die Bedeutung der Rückführbarkeit in der Labormedizin

    Der Weltmetrologietag wird jährlich am 20. Mai begangen, und in diesem Jahr ist „Messen für die Gesundheit“ das Schwerpunktthema. mehr

    Die Messung der Avogadro-Konstante

    Seit dem 20. Mai 2019 ist die Masseneinheit Kilogramm nicht mehr durch den Internationalen Kilogramm-Prototypen definiert, sondern durch den Zahlenwert des Planck’schen Wirkungsquantums, der wichtigsten Fundamentalkonstante aus der Quantenphysik. Voraussetzung für diese Definition war die M ... mehr

    Naturkonstanten als Hauptdarsteller

    Der 20. Mai 2019 ist ein besonderer Tag. Denn ab diesem Tag sind die gewohnten Definitionen dessen, was ein Kilogramm und ein Mol, ein Ampere und ein Kelvin sein sollen, Geschichte. Die Zukunft im Internationalen Einheitensystem sieht vielmehr so aus, dass von nun an Naturkonstanten die Hau ... mehr

  • Autoren

    Prof. Dr. Gavin O’Connor

    Gavin O'Connor wurde in Dublin geboren und schloss 1993 sein Diplom in Analytischer Chemie am Athlone Institute of Technology in Irland ab. In Großbritannien setzte er sein Studium der Analytischen Chemie bis zum Bachelor of Sciences fort, bevor er 1998 an der Universität Plymouth im Bereic ... mehr

    Dr. André Henrion

    André Henrion, Jahrgang 1957, studierte Chemie an der Humboldt-Universität zu Berlin, wo er 1988 mit einer Arbeit auf dem Gebiet der Physikalischen Organischen Chemie promovierte. Danach arbeitete er zunächst am Analytischen Zentrum der Akademie der Wissenschaften, bevor er 1992 zur PTB wec ... mehr

    Rüdiger Ohlendorf

    Rüdiger Ohlendorf, Jahrgang 1959, studierte Chemieingenieurwesen mit Schwerpunkt Instrumentelle Analytik an der Fachhochschule Münster. Nach Beschäftigungen am ISAS (Institut für Spektrochemie und Angewandte Spektroskopie) und bei der Schering AG wechselte er zur Physikalisch-Technischen Bu ... mehr