Aquaporine - die perfekten Wasserfilter der Zelle

17.12.2001

Wasser ist für die Funktion von Zellen und Organen im menschlichen Körper von zentraler Bedeutung. Der Wassertransport zwischen den Zellen erfolgt über in die Zellmembran eingebettete mikrofeine Kanäle, den so genannten Aquaporinen. Wissenschaftlern vom Max-Planck-Institut für Biophysikalische Chemie in Göttingen ist es jetzt gelungen, den genauen Funktionsmechanismus dieser perfekten Wasserfilter mit Hilfe umfangreicher Computersimulationen bis in atomare Details aufzuklären (Science, 14. Dezember 2001).

Aquaporine sind Proteine, die einen wasserleitenden Kanal durch die Zellwand formen; sie finden sich in der ansonsten wasserundurchlässigen Zellmembran vieler Pflanzen und Tiere und verhindern, dass die Zellen zum Beispiel bei einer Änderung der Salzkonzentration in der Umgebung platzen (osmotische Regulierung). Beim Menschen regulieren Aquaporine u.a. den Wasserhaushalt in der Niere, in den roten Blutkörperchen, in der Augenlinse und im Gehirn. Ein Defekt oder eine Fehlfunktion dieser Proteine löst Krankheiten aus, wie Diabetes insipidus, den grauen Star (Katarakt) oder einen neuronal verursachten Gehörverlust.

In allen Fällen ist ein hocheffizienter, aber selektiver Wassertransport von zentraler Bedeutung, der den Austausch anderer Moleküle ausschließt. So lassen die Aquaporine zwar Wassermoleküle hindurch, verhindern aber, dass die Zelle Nährstoffmoleküle oder Salz-Ionen verliert. Obwohl diese Filter sehr feinporig sind, erreichen Aquaporine eine erstaunlich hohe Wasserleitfähigkeit von bis zu drei Milliarden Wassermolekülen pro Sekunde und Kanal. Eine 10x10 cm2 große Membran mit eingebetteten Aquaporinen könnte somit etwa einen Liter Wasser in ca. 7 Sekunden filtern oder entsalzen.

Wie aber erfüllt das Protein diese widerstreitenden Anforderungen? Erste Antworten ergaben sich bereits aus der räumlichen Atomstruktur des Aquaporins (AQP1), die erst vor kurzem in enger Zusammenarbeit zwischen einer japanischen Arbeitsgruppe um Yoshinori Fujiyoshi, einer Baseler Gruppe um Andreas Engel und der Göttinger Max-Planck-Arbeitsgruppe "Theoretische Molekulare Biophysik" mit Hilfe elektronenmikroskopischer Messungen entschlüsselt wurde. Es zeigte sich, dass das Protein in der Zellmembran einen zwei Nanometer (zwei Millionstel Millimeter) langen und an der engsten Stelle nur 0,3 Nanometer breiten Kanal bildet - gerade groß genug, um ein einzelnes Wassermolekül passieren zu lassen. Diese Enge können größere Moleküle gar nicht erst passieren.

Die Evolution hat darüber hinaus aber auch eine Antwort auf die Frage gefunden, wie sich in einem solchen Kanal der Durchfluss kleinerer Ionen blockieren lässt. Lebenswichtig ist es vor allem, den Durchfluss von Protonen (Wasserstoff-Ionen) zu unterbinden, damit eine unterschiedliche Protonenkonzentration (pH-Wert) zwischen dem Innern und dem Äußeren der Zelle als wichtiger Kurzzeit-Energiespeicher aufrechterhalten werden kann. Ähnlich einer elektrischen Batterie würde dieser Speicher bei Durchfluss von Protonen kurzgeschlossen und entladen.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!