Meine Merkliste
my.chemie.de  
Login  

Neue Synthesemethode zur Herstellung fluorierter Piperidine

23.01.2019

Copyright: Frank Glorius

Druckgefäß (Autoklav) zur Durchführung der Hydrierung fluorierter Pyridine. Die Reaktionen werden bei einem Wasserstoffdruck von 50 bar durchgeführt (zum Vergleich: Der normale Atmosphärendruck beträgt 1 bar).

Synthetisch hergestellte Moleküle sind für viele Produkte des menschlichen Lebens essentiell: Medikamente, Pflanzenschutzmittel oder besondere Materialien wie Teflon. Die Moleküle setzen sich dabei aus mehreren Bausteinen zusammen, die auf verschiedene Art kombiniert werden können und die zu unterschiedlichen Eigenschaften führen. Sowohl sogenannten Piperidinen als auch fluorierten Gruppen kommt dabei eine besondere Bedeutung zu. Bei Piperidinen handelt es sich um kleine, ringförmige chemische Verbindungen. Da Fluoratome die Eigenschaften und damit die Wirkung von bestimmten Produkten durch ihre besonderen Eigenschaften dramatisch ändern, werden sie gern in Pharmazeutika eingebaut: So enthalten etwa 20 Prozent aller verkauften Medikamente weltweit Fluor. Bislang war jedoch das Zusammenführen von Fluoratomen und Piperidinen extrem aufwendig. Chemiker der Westfälischen Wilhelms-Universität Münster (WWU) haben nun erstmalig eine neue, leicht durchführbare Synthesemethode zur Herstellung solcher Fluor-tragenden Piperidine entwickelt. Die Studie von Dr. Zackaria Nairoukh, Marco Wollenburg, Dr. Christoph Schlepphorst, Dr. Klaus Bergander und Prof. Dr. Frank Glorius wurde gerade in der Fachzeitschrift „Nature Chemistry“ online veröffentlicht.

Bereits 2017 veröffentlichten die münsterschen Chemiker eine Studie in der Fachzeitschrift „Science“, in der sie ein Verfahren präsentierten, mit dem fluorierte Molekülringe einfach und schnell hergestellt werden können. An diesen Durchbruch knüpfen die Chemiker nun mit ihrer neuen Studie an. „Bislang war es sehr schwierig, Piperidine und Fluormoleküle zu kombinieren, obwohl sie gemeinsam hervorragende chemische Eigenschaften besitzen, die beispielsweise bei der Herstellung von Wirkstoffen relevant sind. Wir haben jetzt eine einfache Synthese entwickelt und so diese beiden Bausteine kombiniert“, erklärt Prof. Dr. Frank Glorius vom Organisch-Chemischen Institut der WWU.

Methodisches Vorgehen

Das Verfahren, das das Team um Frank Glorius entwickelt hat, läuft in zwei Schritten hintereinander – jedoch im selben Behälter – ab:  Als Startmoleküle dienen gut zugängliche fluorierte Pyridine, sogenannte „aromatische“ Verbindungen. Diese Verbindungen sind flach und besitzen eine besonders hohe Stabilität, was sie für viele chemische Abläufe „reaktionsträge“ macht. Im nun publizierten Verfahren wird im ersten Schritt die Aromatizität beseitigt („Dearomatisierung“). Dadurch gelingt in einem zweiten Schritt die Übertragung von Wasserstoffatomen (Hydrierung) gezielt an eine Seite des Ringsystems. Die entstehenden fluorierten Piperidine sind jetzt im Unterschied zu den aromatischen Startmaterialien nicht mehr flach – was für die Bildung komplexer dreidimensionaler Strukturen hilfreich sein kann. Für beide Reaktionsschritte nutzen die Chemiker einen Katalysator. Als Katalysatoren bezeichnen Chemiker und Biochemiker Enzyme oder andere Moleküle, die einzelne Reaktionsschritte beschleunigen oder erst möglich machen.

Die Ergebnisse können nun genutzt werden, um wertvolle und neuartige Bausteine für Pharma- und Agrowirkstoffforschung herzustellen, die zuvor nicht verfügbar waren. „Wir hoffen, dass diese Bausteine bald in großer Menge hergestellt werden“, betont Frank Glorius. Im Rahmen einer kürzlich gewährten Förderung des Europäischen Forschungsrats in Höhe von 2,5 Millionen Euro wollen die Chemiker der WWU der Hydrierung von Aromaten zu einer „Renaissance“ verhelfen und damit neuartige Moleküle effizient erzeugen. „Wir versuchen unter Hochdruck mehr über den Mechanismus der Katalyse zu verstehen, um bessere Katalysatoren zu entwickeln und das Potenzial dieser Reaktionen vollständig nutzen zu können.“

Fakten, Hintergründe, Dossiers
Mehr über WWU Münster
  • News

    Mit mechanischer Kraft Biomasse umwandeln

    Eine der größten globalen Herausforderungen ist es derzeit, erneuerbare Quellen effizient einzusetzen, um in Zukunft den steigenden Bedarf an Energie und Chemikalien abzudecken. Biomasse ist dabei eine vielversprechende Alternative zu den bisherigen fossilen Quellen wie Kohle oder Erdöl. De ... mehr

    Energiereiche Festkörperbatterie: Hohe Energiedichte mit Lithium-Anode und Hybridelektrolyt

    Wissenschaftler des Forschungszentrums Jülich und der Universität Münster haben eine neue Festkörperbatterie vorgestellt, die über eine Anode aus reinem Lithium verfügt. Lithium gilt als ideales Elektrodenmaterial, mit dem sich die höchsten Energiedichten erreichen lassen. Das Metall ist se ... mehr

    Chemiker stellen neuen Reaktionsweg vor

    Wissenschaftler um Prof. Dr. Frank Glorius und Michael Teders von der Westfälischen Wilhelms-Universität Münster (WWU) und Prof. Dr. Dirk Guldi von der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben einen neuen chemischen Reaktionsweg vorgestellt, der für die Forschung und fü ... mehr

  • Forschungsinstitute

    Westfaelische Wilhelms-Universität Münster (WWU), Institut für Anorganische und Analytische Chemie

    mehr

  • Universitäten

    Westfälische Wilhelms-Universität Münster (WWU)

    Die Westfälische Wilhelms-Universität Münster (WWU) hat in den Geistes- und Sozialwissenschaften, der Mathematik, den Naturwissenschaften, Lebenswissenschaften sowie Wirtschafts- und Rechtswissenschaften ein starkes Forschungsprofil entwickelt. Sie fördert gezielt die Spitzenforschung und d ... mehr

  • q&more Artikel

    Alternativen zum Tierversuch?

    Die Aufklärung des Metabolismus potenzieller neuer Wirkstoffe ist eine der großen Herausforderungen in der pharmazeutischen Forschung und Entwicklung. Sie ist in der Regel sehr zeitaufwändig und kostenintensiv. Klassische Ansätze basieren dabei im Wesentlichen auf In-vivo-Experimenten mit L ... mehr

    Ausdrucksstark

    Biologische Moleküle an Oberflächen zu koppeln und in dieser Form für Messverfahren, zur Analytik oder in Produktionsprozessen einzusetzen, ist ein innovativer Ansatz, der in industriellen Anwendungen zunehmend Bedeutung gewinnt. In gängigen Verfahren werden Oberflächen und biologische Mole ... mehr

  • Autoren

    Dr. Martin Vogel

    Martin Vogel, geb. 1973, hat Chemie studiert und an der Universität Münster in analytischer Chemie promoviert. Nach seiner Promotion ging er für einige Jahre an die Universität Twente in Enschede (Niederlande). Seit 2006 ist er wissenschaftlicher Mitarbeiter am Institut für Anorganische und ... mehr

    Prof. Dr. Joachim Jose

    Joachim Jose, geb. 1961, studierte Biologie an der Universität Saarbrücken, wo er promovierte. Die Habilitation erfolgte am Institut für Pharma­zeutische und Medizinische Chemie der Universität des Saarlandes. Von 2004 bis 2011 war Professor für Bioanalytik (C3) an der Heinrich-Heine-Univer ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.