Meine Merkliste
my.chemie.de  
Login  

Wie man effiziente Materialien für OLED-Displays entwickelt

25.09.2019

© D. Andrienko / MPI-P

Ladungen in organischen Halbleitern können durch Sauerstoff- oder Wassermoleküle gefangen werden.

Für Anwendungen wie Leuchtdioden oder Solarzellen stehen heute organische Materialien im Mittelpunkt der Forschung. Diese organischen Moleküle könnten eine vielversprechende Alternative zu den bisher verwendeten Halbleitern wie Silizium oder Germanium sein und werden in OLED-Displays eingesetzt. Ein großes Problem ist, dass in vielen organischen Halbleitern der Stromfluss durch mikroskopische Defekte behindert wird. Wissenschaftler um Dr. Gert-Jan Wetzelaer und Dr. Denis Andrienko vom Max-Planck-Institut für Polymerforschung haben nun untersucht, wie organische Halbleiter so gestaltet werden können, dass die Leitfähigkeit durch diese Defekte nicht beeinflusst wird.

Das Grundprinzip der ersten Glühbirne, die Thomas Edison im 19. Jahrhundert erfunden hat, war sehr einfach: Elektronen - negativ geladene Teilchen - durchfließen einen Kohlefaden und erzeugen Licht, indem ihre Energie in Licht und Wärme umgewandelt wird. Die Physik der Lichterzeugung in Halbleitern ist heute komplexer: Elektronen durchfließen ein Bauteil und geben ihre Energie an einem bestimmten Punkt ab. Dazu müssen sie einen freien Platz auf einer tiefer liegenden Energieebene finden, d. h. einen Platz, der nicht von einem Elektron besetzt ist. Dieser freie Platz kann als eine Art positive Ladung, ein sogenanntes Loch, angesehen werden. Springt das Elektron in das Loch, wird seine Energie in Form von Licht freigesetzt. Nach diesem Prinzip wandelt eine organische Leuchtdiode (OLED) elektrischen Strom in Licht um.

Die Effizienz eines solchen Bauteils hängt stark davon ab, wie gut Löcher und Elektronen geleitet werden können. Wenn entweder Elektronen oder Löcher durch Defekte eingefangen werden, so dass sie nicht mehr zum Strom beitragen können, liegt ein Überschuss einer Ladungsart vor. Wenn beispielsweise Löcher gefangen werden, gibt es mehr Elektronen als Löcher, d. h. nur ein Teil der Elektronen kann Licht erzeugen und die Effizienz der OLED wird reduziert.

"In unseren neuesten Experimenten haben wir eine große Bandbreite an organischen Halbleitern untersucht und die wichtigsten Parameter herausgefunden, die für eine gleichmäßige und defektfreie Leitung von Löchern und Elektronen wichtig sind", sagt Gert-Jan Wetzelaer (Arbeitskreis Prof. Paul Blom). In einem Halbleiter bewegen sich Elektronen auf einem höheren Energieniveau, während sich Löcher auf einem niedrigeren (tieferen) Energieniveau bewegen: Die Wissenschaftlerinnen und Wissenschaftler fanden heraus, dass die Leitfähigkeit beider Ladungsarten stark von der Position dieser Energieniveaus abhängt. "Je nach Energie dieser Ebenen kann der Ladungstransport entweder von Elektronen oder Löchern dominiert werden oder sie tragen mit der richtigen Wahl der Energieniveaus gleichermaßen zum Ladungstransport bei", sagt Wetzelaer.

In Computersimulationen haben Wissenschaftler um Denis Andrienko (Arbeitskreis Prof. Kurt Kremer) die Herkunft dieser Ladungsfallen genauer untersucht: "In unseren Simulationen haben wir Cluster von Wassermolekülen im Halbleiter eingefügt, die sich in kleinen Taschen im Halbleiter ansammeln können", erklärt Andrienko. "Wir haben festgestellt, dass diese Cluster von Wassermolekülen als Falle für Löcher fungieren können, was zu elektronendominierten organischen Halbleitern führt. Im Gegensatz dazu fangen durch Sauerstoff bedingte Defekte bei lochdominierten Halbleitern Elektronen ein. Als Ergebnis konnten wir zeigen, dass der hochunipolare Ladungstransport für Löcher oder Elektronen von einer sehr geringen Anzahl von Defekten wie Wasser und Sauerstoff bestimmt wird." Leider hat sich die vollständige Beseitigung solcher Defekte als schwierig erwiesen.

Damit können die Mainzer Forscher definieren, wie sie in Zukunft hocheffiziente organische Halbleiter gestalten können: Die unterschiedlichen Energieniveaus des Materials sollten in einem bestimmten Bereich liegen, was den Einfluss von Sauerstoff- und Wassermolekülen, die die Hauptursache für das Einfangen von Ladungen sind, stark reduziert. Basierend auf diesem Konzept wurden kürzlich die ersten hocheffizienten OLEDs mit defektfreier elektrischer Leitfähigkeit realisiert.

Fakten, Hintergründe, Dossiers
  • OLEDs
  • Displays
  • organische Halbleiter
  • Elektronen
Mehr über MPI für Polymerforschung
  • News

    Nylon als Baustein für transparente elektronische Geräte?

    Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben unter der Leitung von Dr. Kamal Asadi eine vier Jahrzehnte alte Herausforderung gelöst. Sie haben dünne Nylonschichten hergestellt, die beispielsweise in elektronischen Speicherkomponenten eingesetzt werden ... mehr

    Auf dem Weg zu druckbaren organischen Leuchtdioden

    Organische Leuchtdioden (OLEDs) sind heute in vielen elektronischen Geräten, angefangen von Smartphones bis hin zu Fernsehgeräten, in Form von Displays verbaut. Wissenschaftlern des Max-Planck-Instituts für Polymerforschung (MPI-P) ist es nun gelungen, ein neues Design dieser Leuchtdioden z ... mehr

    Auf Wiedersehen, Silizium?

    Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweis ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Polymerforschung

    Das Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerwissenschaft. Es wurde 1983 auf dem Campus der Johannes Gutenberg-Universität gegründet und nahm im Juni 1984 seine wissenschaftliche Arbeit auf. mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Verzerrte Atome

    Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Io ... mehr

    Laser erzeugt topologischen Zustand in Graphen

    Die Entdeckung neuer Methoden zur Kontrolle topologischer Aspekte von Quantenmaterialien ist ein wichtiges Forschungsfeld, da mit ihnen Materialien mit wünschenswerten Ladungs- und Spintransporteigenschaften für zukünftige Technologien entwickelt werden können. Nun haben Wissenschaftler vom ... mehr

    Gedächtniseffekt auf Einzelatom-Ebene

    Eine internationale Forschungsgruppe hat an einem künstlichen Riesenatom neue Quanteneigenschaften beobachtet. Das untersuchte Quantensystem weist offenbar ein Gedächtnis auf – eine neue Erkenntnis, die man für den Bau eines Quantencomputers nutzen könnte. Die Forschergruppe aus deutschen, ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.