22.11.2019 - Universität Stuttgart

Nachhaltige chemische Produktion mit Elektrizität

Neue Forschungsinitiative CHEM|ampere

Bis 2050 soll die chemische Industrie fast vollständig klimaneutral wirtschaften und auf fossile Rohstoffe wie Öl, Gas oder Kohle verzichten. Deshalb müssen alternative Kohlenstoffquellen und erneuerbare Energien in die Produktion integriert werden. Eine Forschungsinitiative der Universität Stuttgart, des Deutschen Zentrums für Luft- und Raumfahrt (DLR), des Zentrums für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) und des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik (IGB) will nun ein Konzept für die Chemiefabrik der Zukunft erarbeiten. Der Verbund mit dem Namen CHEM|ampere wird grundlagen- wie auch anwendungsorientiert arbeiten.

Gemäß dem Klimaschutzplan der Bundesregierung sowie der aktuellen Beschlüsse des Klimakabinetts müssen alle Sektoren – auch die chemische Industrie – bis 2030 gegenüber dem Jahr 1999 eine CO2-Minderung um 55 Prozent erbringen. Die chemische Industrie hat bereits erhebliche CO2-Minderungen erbracht, indem sie ihre Prozesse mit Blick auf größtmögliche Effizienz immer weiter optimiert hat. Für den weiteren Weg zu einer weitgehend CO2-neutralen Produktion bis 2050 sind jedoch grundlegend neue Technologien notwendig.

Insbesondere muss auf nicht-fossile Rohstoffe als stoffliche Ausgangsbasis für die chemische Produktion umgestellt werden. So könnten neben Abfallströmen und Biomasse auch die weltweit verfügbaren nicht-fossilen Verbindungen Kohlendioxid (CO2) und Wasser (H2O) eingesetzt werden, um klimaneutrale Kohlenwasserstoffe herzustellen, wobei Sauerstoff (O2) und Stickstoff (N2) als Rohstoffe für höherpreisige Produkte dienen könnten. Hinzu kommt: Für eine CO2-neutrale Produktion muss die für die Aktivierung dieser Moleküle notwendige Energie aus regenerativen Quellen stammen. Für eine wirtschaftliche Darstellung dieser Verfahren sollen zunächst bevorzugt höherpreisige Spezialchemikalien hergestellt werden.

Plasmaverfahren, Elektrolyseprozesse und elektrisch beheizte Reaktoren als Basistechnologien

Das Konzept der neuen Forschungsinitiative basiert auf dem Einsatz von regenerativem elektrischem Strom als Sekundärenergieform zur Aktivierung der nicht-fossilen und gut verfügbaren Rohstoffe CO2, H2O, O2 und N2. Sie fokussiert auf drei elektrischen Produktionstechnologien: Plasmaverfahren, Elektrolyseprozesse und elektrisch beheizte Reaktoren. An den Instituten der Universität Stuttgart und den beteiligten außeruniversitären Forschungseinrichtungen werden bereits rund zehn Forschungsprojekte durchgeführt, die im Rahmen der Initiative gebündelt und erweitert werden.

Sprecher der Initiative ist Prof. Elias Klemm, Leiter des Instituts für Technische Chemie (ITC) der Universität Stuttgart. Zusammen mit dem Institut für Technische Thermodynamik des DLR forscht das ITC seit 2009 an der CO2/H2O-Coelektrolyse. Das ZSW hat eine lange Tradition im Bereich der Gewinnung von CO2 aus der Luft und der Umwandlung von Ökostrom in Wasserstoff und Methan. Plasmaverfahren werden amInstitut für Grenzflächenverfahrenstechnik und Plasmatechnologie und am Institut für Photovoltaik der Universität Stuttgart sowie am Fraunhofer-IGB durchgeführt. Die direkte elektrische Beheizung von chemischen Reaktoren wird vom „MCI – Die Unternehmerische Hochschule“ in enger Zusammenarbeit mit der Firma CoorsTek und der Universität Stuttgart wahrgenommen.

Firmen wie Clariant, BASF und Evonik sowie Organisationen wie die DECHEMA haben zugesagt, im Beirat der Forschungsinitiative mitzuwirken. Die Forschungsinitiative soll zum 1. Januar 2020 starten.

Fakten, Hintergründe, Dossiers
  • regenerative Energien
Mehr über Uni Stuttgart
  • News

    Diesel und Kerosin aus Wasser, Luft und Wind

    Forschende aus aller Welt suchen derzeit nach neuen und bezahlbaren Wegen zu „sauberem“ Kraftstoff. Doch während Autos längst mit Strom aus Batterien unterwegs sind, ist eine solche Umrüstung zum Beispiel bei Flugzeugen oder Containerschiffen nicht möglich, da die Batterien für diese zu sch ... mehr

    4-Dimensionale Bilder aus winzigen Hohlräumen

    Wie Schadstoffe sich in so genannten teilgesättigten porösen Medien – zum Beispiel in Sand oder Kies – ausbreiten, lässt sich aufgrund der komplexen Prozesse nur schwer berechnen. Ein Team um Holger Steeb, Forschungsleiter im Exzellenzcluster SimTech sowie im Sonderforschungsbereich 1313 de ... mehr

    Aus Holz mach Bioplastik mach Holz

    Konventionelle Kunststoffverpackungen basieren in der Herstellung auf Erdöl und belasten nach Gebrauch als Plastikmüll die Umwelt. Das neue Forschungsprojekt „SusPackaging“ an der Universität Stuttgart will bioverträgliche Verpackungsmaterialien entwickeln, die nachhaltig produzierte Substr ... mehr

Mehr über Deutsches Zentrum für Luft- und Raumfahrt
Mehr über ZSW
Mehr über Fraunhofer-Institut IGB
  • News

    Biologisch abbaubare Kunststoffalternativen für die Kosmetikbranche

    Rund 38 Kilogramm Plastikmüll fallen in Deutschland jährlich pro Kopf an. Mit dem Ziel, ein nachhaltiges Gesamtkonzept aus biologisch abbaubaren Verpackungsalternativen im Kosmetikbereich zu schaffen, forschen Wissenschaftler des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechn ... mehr

    Farbstoffe aus atmosphärischem CO₂

    Die Zeit beim Klimaschutz drängt. Einen Lösungsansatz bietet die Nutzbarmachung des Treibhausgases CO2 als Rohstoff für Chemikalien. Hierfür hat das Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB mit Partnern aus Wissenschaft und Industrie in dem von der EU geförderten P ... mehr

    Eine echte Alternative zum Erdöl

    Ein Forschungsteam der Fraunhofer-Gesellschaft und der Technischen Universität München (TUM) unter Leitung des Chemikers Volker Sieber hat eine neue Polyamid-Familie entwickelt, die sich aus einem Nebenprodukt der Zelluloseproduktion herstellen lässt – ein gelungenes Beispiel für nachhaltig ... mehr

  • Forschungsinstitute

    Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik (IGB)

    Das Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB erarbeitet für die Wirtschaft und öffentliche Auftraggeber Problemlösungen in den Bereichen Gesundheit, Umwelt und Technik. Zu unseren Kompetenzen zählen Grenzflächentechnik, Membrantechnik, Biotechnologie und Zellsystem ... mehr

  • q&more Artikel

    3D-Gewebemodelle mit Immunkompetenz

    Die angeborene Immunität ist ein zentraler Bestandteil der menschlichen Immunabwehr. Mustererkennungsrezeptoren (Pattern Recognition Receptors, PRR), wie die Toll-like-Rezeptoren (TLR) spielen in diesem System eine Schlüsselrolle. mehr

  • Autoren

    Dr. Anke Burger-Kentischer

    Anke Burger-Kentischer promovierte an der Universität Tübingen über „Zelluläre und molekulare Mechanismen der strahleninduzierten Lungenfibrose“. Während ihres Postdoc-Aufenthaltes am Institut für Physiologie der Ludwig-Maximilians-Universität München beschäftigte sie sich mit dem zellspezi ... mehr

    Dr. Kai Sohn

    Kai Sohn, Jahrgang 1968, studierte Biologie an der Universität Heidelberg und schloss sein Studium als Diplombiologe ab. Er promovierte 1997 am Biochemiezentrum der Universität Heidelberg. Ab 1998 arbeitete Dr. Sohn an der Universität Stuttgart als Postdoc im Bereich medizinisch relevanter ... mehr

    Prof. Dr. Steffen Rupp

    Steffen Rupp, geboren 1962, studierte Chemie an den Universitäten Stuttgart, Freiburg und Cincinnati, OH, USA. Er promovierte 1994 am Institut für Biochemie der Universität Stuttgart mit Auszeichnung. Von 1995-1998 arbeitete er im Rahmen seines DFG-Forschungsstipendiums am Whitehead Institu ... mehr