02.07.2020 - Max-Planck-Institut für Eisenforschung

Design zuverlässiger nano- und mikroelektronischer Systeme

Wissenschaftler untersuchen das Verformungsverhalten von Silizium in nanoelektronischen Anwendungen

Silizium verhält sich spröde wie Glas, dennoch ist es das Material auf das wir uns täglich in einer Vielzahl von wichtigen Anwendungen verlassen - egal ob es sich um die Elektronik in unserem Handy handelt, die Datenspeicher in unseren Laptops oder wichtige Sensoren im Auto.

Seit kurzem hat man erkannt, dass sich die mechanischen Eigenschaften von Silizium stark mit der Größe verändern. Schrumpft man Silizium auf Dimensionen, die 100 bis 1000 mal kleiner sind als ein menschliches Haar, ist Silizium nicht mehr spröde sondern wird weich wie Butter. Dies geschieht bei massiven Silizium erst bei hohen Temperaturen oberhalb von 540°C. Wissenschaftler der University of Illinois, USA, und des Max-Planck-Instituts für Eisenforschung (MPIE) haben Federn aus Silizium, die in mikro- und nanoelektro-mechanischen Sensoren verwendet werden, untersucht und ihre Ergebnisse in der Fachzeitschrift PNAS veröffentlicht.

In modernen miniaturisierten Sensoren wird Silizium als elastische Feder in Form von sehr dünnen Biegebalken verwendet. Unklar ist, ob schon bei wesentlich niedrigeren Temperaturen als 540°C diese Federn ihr elastisches Verhalten verlieren und sich stattdessen unter Belastung irreversibel verformen. Die Forscher Dr. Mohammed Elhebeary und Prof. Taher Saif von der University of Illinois entwickelten eine neue Testplattform, die es ermöglicht sehr dünne Siliziumbalken unter Temperatur mechanischer Belastung auszusetzen und live im Elektronenmikroskop zu beobachten wie das Material reagiert. Dabei zeigte sich, dass bereits bei 400°C die dünnen Biegebalken irreversibel verformen. Wieso dies der Fall ist konnten Dr. Tristan Harzer und Prof. Gerhard Dehm vom MPIE durch höchstauflösende Transmissions-Elektronenmikroskopie aufklären. Mit dieser Methode lässt sich das Material bis in den atomaren Bereich untersuchen. Die Max-Planck-Wissenschaftler konnten zeigen, dass bei 400°C unter Stress Versetzungen in dem bis dahin defektfreien Silizium entstanden sind. Versetzungen sind atomare Defekte, welche die Atome verschieben. „In Metallen kommen Versetzungen häufig vor und führen zur guten Umformbarkeit, aber in Silizium sollten sie erst oberhalb von 540°C auftreten.“, erklärt Dehm. Die Entstehung von Versetzungen in Silizium bei 400°C war unerwartet.

Die neuen Erkenntnisse geben den Forschern und Ingenieuren wichtige Informationen für das Design zukünftiger Sensoren aus Silizium, insbesondere wenn sie höheren Temperaturen ausgesetzt werden sollen.

  • M. Elhebeary, T. Harzer, G. Dehm, T. Saif; "Time dependent plasticity in silicon microbeams mediated by dislocation nucleation"; PNAS, 29. Juni 2020
Fakten, Hintergründe, Dossiers
Mehr über MPI für Eisenforschung
  • News

    Was im Stahl für Ordnung sorgt

    Kohlenstoffatome spielen für die Festigkeit von Stahl eine wichtige Rolle. Doch auch in Stählen, die schon seit Jahrzehnten im Einsatz sind, war das kollektive Verhalten dieser Atome bisher nicht vollständig verstanden. Eine gemeinsame Arbeit an der Ruhr-Universität Bochum (RUB) und dem Max ... mehr

    Düsseldorfer Materialforscher wird europäischer Science Slam Champion

    Aniruddha Dutta, Doktorand am Max-Planck-Institut für Eisenforschung (MPIE) und amtierender deutscher Science Slam Meister 2018/19, konnte sich gegen seine europäische Konkurrenz durchsetzen und gewann die europäische Meisterschaft am 27. September in Wien, Österreich. Seine Konkurrenz best ... mehr

    Neue Katalysatorklasse für die Energieumwandlung

    „Die theoretischen Möglichkeiten scheinen fast zu gut, um wahr zu sein", sagen Forscher. Viele der für die Energiewende wichtigen chemischen Reaktionen sind sehr komplex und laufen nur unter großen Energieverlusten ab. Das verhindert bisher die breite Anwendung von Energiewandlungs- und Spe ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Eisenforschung

    Am Max-Planck-Institut für Eisenforschung GmbH (MPIE) wird Forschung auf dem Gebiet von Eisen, Stahl und verwandten Werkstoffen wie Nickel, Titan und intermetallische Phasenlegierungen betrieben. Ein wesentliches Ziel der Untersuchungen ist ein verbessertes Verständnis der komplexen physika ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Malen mit Kristallen

    Halbleiter aus organischen Materialien, z.B. für Leuchtdioden (OLEDs) und Solarzellen, könnten in Zukunft siliziumbasierte Elektronik ersetzen oder ergänzen. Die Effizienz solcher Bauelemente hängt entscheidend von der Qualität der dünnen Halbleiter-Schichten ab. Diese werden durch Beschich ... mehr

    Corona-Folgen für das Erdsystem

    COVID-19 wirkt sich unmittelbar auf die Gesundheit, die Wirtschaft und das soziale Wohlergehen in unserem persönlichen Leben aus. Doch die Folgen für das gesamte Erdsystem, insbesondere solche, die sich aus den weltweit verhängten Kontaktbeschränkungen ergeben, könnten sehr viel weitreichen ... mehr

    Tintenfisch inspiriertes Material heilt sekundenschnell

    Ein weiches Material, das sich augenblicklich selbst heilt, ist keine Fiktion mehr, sondern Realität. Ein Team von Wissenschaftlern am Max-Planck-Institut für Intelligente Systeme und der Pennsylvania State University verändert die Nanostruktur eines neuen dehnbaren Materials so lange, bis ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr